Advertisement

International Journal of Hematology

, Volume 83, Issue 3, pp 201–207 | Cite as

The Dark Side of Activation-Induced Cytidine Deaminase: Relationship with Leukemia and Beyond

Progress in Hematology

Abstract

Activation-induced cytidine deaminase (AID) is a unique cellular enzyme that can trigger point mutations and chromosomal translocations, both of which potentially disturb normal cellular metabolism and affect cancer initiation and progression. The involvement of AID in the progression of leukemia has been suggested by multiple groups on the basis of observations of the statistical correlation between AID expression and a poor prognosis of B-cell chronic lymphocytic leukemia. The fact that ectopic expression of AID in mice results in tumors of the lung and T-lymphocytes suggests an oncogenic role for AID. The inducible nature of AID expression indicates that AID might be induced and cause oncogenic mutations, even in epithelial tissues, where AID expression is absent or very weak under normal conditions. If AID can be induced in epithelial cells by inflammatory signals, as from B-lymphocytes, it may be involved in various pathologic conditions, including inflammation- and infection-associated cancers, for which the molecular mechanism is largely unknown, despite the clinical significance of these diseases.

Key words

AID Somatic mutation Chromosomal translocation Inflammation Cancer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Muramatsu M, Sankaranand VS, Anant S, et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem. 1999;274:18470–18476.CrossRefGoogle Scholar
  2. 2.
    Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102:553–563.CrossRefGoogle Scholar
  3. 3.
    Revy P, Muto T, Levy Y, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell. 2000;102:565–575.CrossRefGoogle Scholar
  4. 4.
    Oppezzo P, Vuillier F, Vasconcelos Y, et al. Chronic lymphocytic leukemia B cells expressing AID display a dissociation between class switch recombination and somatic hypermutation. Blood. 2003;101:4029–4032.CrossRefGoogle Scholar
  5. 5.
    McCarthy H, Wierda WG, Barron LL, et al. High expression of activation-induced cytidine deaminase (AID) and splice variants is a distinctive feature of poor-prognosis chronic lymphocytic leukemia. Blood. 2003;101:4903–4908.CrossRefGoogle Scholar
  6. 6.
    Heintel D, Kroemer E, Kienle D, et al, and the German CLL Study Group. High expression of activation-induced cytidine deaminase (AID) mRNA is associated with unmutated IGVH gene status and unfavourable cytogenetic aberrations in patients with chronic lymphocytic leukaemia. Leukemia. 2004;18:756–762.CrossRefGoogle Scholar
  7. 7.
    Yoshikawa K, Okazaki IM, Eto T, et al. AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science. 2002;296:2033–2036.CrossRefGoogle Scholar
  8. 8.
    Martin A, Scharff MD. Somatic hypermutation of the AID transgene in B and non-B cells. Proc Natl Acad Sci U S A. 2002;99:12304–12308.CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Okazaki IM, Hiai H, Kakazu N, et al. Constitutive expression of AID leads to tumorigenesis. J Exp Med. 2003;197:1173–1181.CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Kotani A, Okazaki IM, Muramatsu M, et al. A target selection of somatic hypermutations is regulated similarly between T and B cells upon activation-induced cytidine deaminase expression. Proc Natl Acad Sci U S A. 2005;102:4506–4511.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Honjo T, Kataoka T. Organization of immunoglobulin heavy chain genes and allelic deletion model. Proc Natl Acad Sci U S A. 1978;75:2140–2144.CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kinoshita K, Honjo T. Linking class-switch recombination with somatic hypermutation. Nat Rev Mol Cell Biol. 2001;2:493–503.CrossRefGoogle Scholar
  13. 13.
    Honjo T, Kinoshita K, Muramatsu M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol. 2002;20:165–196.CrossRefGoogle Scholar
  14. 14.
    Stavnezer J, Amemiya CT. Evolution of isotype switching. Semin Immunol. 2004;16:257–275.CrossRefGoogle Scholar
  15. 15.
    Chaudhuri J, Alt FW. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol. 2004;4:541–552.CrossRefGoogle Scholar
  16. 16.
    Maizels N. Immunoglobulin gene diversification. Annu Rev Genet. 2005;39:23–46.CrossRefGoogle Scholar
  17. 17.
    Kocks C, Rajewsky K. Stable expression and somatic hypermutation of antibody V regions in B-cell developmental pathways. Annu Rev Immunol. 1989;7:537–559.CrossRefGoogle Scholar
  18. 18.
    Wagner SD, Neuberger MS. Somatic hypermutation of immunoglobulin genes. Annu Rev Immunol. 1996;14:441–457.CrossRefGoogle Scholar
  19. 19.
    Barreto VM, Ramiro AR, Nussenzweig MC. Activation-induced deaminase: controversies and open questions. Trends Immunol. 2005;26:90–96.CrossRefGoogle Scholar
  20. 20.
    Doi T, Kinoshita K, Ikegawa M, Muramatsu M, Honjo T. De novo protein synthesis is required for the activation-induced cytidine deaminase function in class-switch recombination. Proc Natl Acad Sci U S A. 2003;100:2634–2638.CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Begum NA, Kinoshita K, Muramatsu M, Nagaoka H, Shinkura R, Honjo T. De novo protein synthesis is required for activation-induced cytidine deaminase-dependent DNA cleavage in immunoglobulin class switch recombination. Proc Natl Acad Sci U S A. 2004;101:13003–13007.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Nagaoka H, Ito S, Muramatsu M, Nakata M, Honjo T. DNA cleavage in immunoglobulin somatic hypermutation depends on de novo protein synthesis but not on uracil DNA glycosylase. Proc Natl Acad Sci U S A. 2005;102:2022–2027.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Di Noia J, Neuberger MS. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature. 2002;419:43–48.CrossRefGoogle Scholar
  24. 24.
    Ramiro AR, Stavropoulos P, Jankovic M, Nussenzweig MC. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat Immunol. 2003;4:452–456.CrossRefGoogle Scholar
  25. 25.
    Morgan HD, Dean W, Coker HA, Reik W, Petersen-Mahrt SK. Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem. 2004;279:52353–52360.CrossRefGoogle Scholar
  26. 26.
    Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature. 2002;418:646–650.CrossRefGoogle Scholar
  27. 27.
    Lecossier D, Bouchonnet F, Clavel F, Hance AJ. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science. 2003;300:1112.CrossRefGoogle Scholar
  28. 28.
    Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature. 2003;424:94–98.CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Rada C, Williams GT, Nilsen H, Barnes DE, Lindahl T, Neuberger MS. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr Biol. 2002;12:1748–1755.CrossRefGoogle Scholar
  30. 30.
    Imai K, Slupphaug G, Lee WI, et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol. 2003;4:1023–1028.CrossRefGoogle Scholar
  31. 31.
    Petersen-Mahrt SK, Neuberger MS. In vitro deamination of cytosine to uracil in single-stranded DNA by apolipoprotein B editing complex catalytic subunit 1 (APOBEC1). J Biol Chem. 2003;278:19583–19586.CrossRefGoogle Scholar
  32. 32.
    Eto T, Kinoshita K, Yoshikawa K, Muramatsu M, Honjo T. RNA-editing cytidine deaminase Apobec-1 is unable to induce somatic hypermutation in mammalian cells. Proc Natl Acad Sci U S A. 2003;100:12895–12898.CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Begum NA, Kinoshita K, Kakazu N, et al. Uracil DNA glycosylase activity is dispensable for immunoglobulin class switch. Science. 2004;305:1160–1163.CrossRefGoogle Scholar
  34. 34.
    Ta VT, Nagaoka H, Catalan N, et al. AID mutant analyses indicate requirement for class-switch-specific cofactors. Nat Immunol. 2003;4:843–848.CrossRefGoogle Scholar
  35. 35.
    Barreto V, Reina-San-Martin B, Ramiro AR, McBride KM, Nussenzweig MC. C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. Mol Cell. 2003;12:501–508.CrossRefGoogle Scholar
  36. 36.
    Shinkura R, Ito S, Begum NA, et al. Separate domains of AID are required for somatic hypermutation and class-switch recombination. Nat Immunol. 2004;5:707–712.CrossRefGoogle Scholar
  37. 37.
    Ito S, Nagaoka H, Shinkura R, et al. Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1. Proc Natl Acad Sci U S A. 2004;101:1975–1980.CrossRefPubMedCentralGoogle Scholar
  38. 38.
    McBride KM, Barreto V, Ramiro AR, Stavropoulos P, Nussenzweig MC. Somatic hypermutation is limited by CRM1-dependent nuclear export of activation-induced deaminase. J Exp Med. 2004;199:1235–1244.CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Chaudhuri J, Khuong C, Alt FW. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature. 2004;430:992–998.CrossRefGoogle Scholar
  40. 40.
    Basu U, Chaudhuri J, Alpert C, et al. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature. 2005;438:508–511.CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Pasqualucci L, Kitaura Y, Gu H, Dalla-Favera R. PKA-mediated phosphorylation regulates the function of activation-induced deaminase (AID) in B cells. Proc Natl Acad Sci U S A. 2006;10:395–400.CrossRefGoogle Scholar
  42. 42.
    Hamblin TJ, Orchard JA, Ibbotson RE, et al. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood. 2002;99:1023–1029.CrossRefGoogle Scholar
  43. 43.
    Oscier DG, Gardiner AC, Mould SJ, et al. Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood. 2002;100:1177–1184.Google Scholar
  44. 44.
    Krober A, Seiler T, Benner A, et al. VH mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood. 2002;100:1410–1416.Google Scholar
  45. 45.
    Muto T, Muramatsu M, Taniwaki M, Kinoshita K, Honjo T. Isolation, tissue distribution and chromosomal localization of the human activation-induced cytidine deaminase (AID) gene. Genomics. 2000;68:85–88.CrossRefGoogle Scholar
  46. 46.
    Albesiano E, Messmer BT, Damle RN, Allen SL, Rai KR, Chiorazzi N. Activation-induced cytidine deaminase in chronic lymphocytic leukemia B cells: expression as multiple forms in a dynamic, variably sized fraction of the clone. Blood. 2003;102:3333–3339.CrossRefGoogle Scholar
  47. 47.
    Shen HM, Peters A, Baron B, Zhu X, Storb U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science. 1998;280:1750–1752.CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Pasqualucci L, Migliazza A, Fracchiolla N, et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc Natl Acad Sci U S A. 1998;95:11816–11821.CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Pasqualucci L, Neumeister P, Goossens T, et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature. 2001;412:341–346.CrossRefPubMedCentralGoogle Scholar
  50. 50.
    Lossos IS, Levy R, Alizadeh AA. AID is expressed in germinal center B-cell-like and activated B-cell-like diffuse large-cell lymphomas and is not correlated with intraclonal heterogeneity. Leukemia. 2004;18:1775–1779.CrossRefGoogle Scholar
  51. 51.
    Thompson MP, Kurzrock R. Epstein-Barr virus and cancer. Clin Cancer Res. 2004;10:803–821.CrossRefGoogle Scholar
  52. 52.
    Ramiro AR, Jankovic M, Eisenreich T, et al. AID is required for c-myc/IgH chromosome translocations in vivo. Cell. 2004;118:431–438.CrossRefGoogle Scholar
  53. 53.
    Uchida J, Yasui T, Takaoka-Shichijo Y, et al. Mimicry of CD40 signals by Epstein-Barr virus LMP1 in B lymphocyte responses. Science. 1999;286:300–303.CrossRefGoogle Scholar
  54. 54.
    He B, Raab-Traub N, Casali P, Cerutti A. EBV-encoded latent membrane protein 1 cooperates with BAFF/BLyS and APRIL to induce T cell-independent Ig heavy chain class switching. J Immunol. 2003;171:5215–5224.CrossRefPubMedCentralGoogle Scholar
  55. 55.
    Li MJ, Maizels N. Activation and targeting of immunoglobulin switch recombination by activities induced by EBV infection. J Immunol. 1999;163:6659–6664.Google Scholar
  56. 56.
    Chang KL, Chen YY, Shibata D, Weiss LM. Description of an in situ hybridization methodology for detection of Epstein-Barr virus RNA in paraffin-embedded tissues, with a survey of normal and neoplastic tissues. Diagn Mol Pathol. 1992;1:246–255.CrossRefGoogle Scholar
  57. 57.
    Pileri P, Uematsu Y, Campagnoli S, et al. Binding of hepatitis C virus to CD81. Science. 1998;282:938–941.CrossRefGoogle Scholar
  58. 58.
    Silvestri F, Pipan C, Barillari G, et al. Prevalence of hepatitis C virus infection in patients with lymphoproliferative disorders. Blood. 1996;87:4296–4301.Google Scholar
  59. 59.
    Kitay-Cohen Y, Amiel A, Hilzenrat N, et al. Bcl-2 rearrangement in patients with chronic hepatitis C associated with essential mixed cryoglobulinemia type II. Blood. 2000;96:2910–2912.Google Scholar
  60. 60.
    Machida K, Cheng KT, Sung VM, et al. Hepatitis C virus induces a mutator phenotype: enhanced mutations of immunoglobulin and protooncogenes. Proc Natl Acad Sci U S A. 2004;101:4262–4267.CrossRefPubMedCentralGoogle Scholar
  61. 61.
    Ohmori K, Maeda S, Okayama T, Masuda K, Ohno K, Tsujimoto H. Molecular cloning of canine activation-induced cytidine deaminase (AID) cDNA and its expression in normal tissues. J Vet Med Sci. 2004;66:739–741.CrossRefGoogle Scholar
  62. 62.
    Arakawa H, Hauschild J, Buerstedde JM. Requirement of the acti-vation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science. 2002;295:1301–1306.CrossRefGoogle Scholar
  63. 63.
    Saunders HL, Magor BG. Cloning and expression of the AID gene in the channel catfish. Dev Comp Immunol. 2004;28:657–663.CrossRefGoogle Scholar
  64. 64.
    Litinskiy MB, Nardelli B, Hilbert DM, et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol. 2002;3:822–829.CrossRefPubMedCentralGoogle Scholar
  65. 65.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–867.CrossRefPubMedCentralGoogle Scholar
  66. 66.
    Bjedov I, Tenaillon O, Gerard B, et al. Stress-induced mutagenesis in bacteria. Science. 2003;300:1404–1409.CrossRefGoogle Scholar
  67. 67.
    Travis JM, Travis ER. Mutator dynamics in fluctuating environments. Proc Biol Sci. 2002;269:591–597.CrossRefPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2006

Authors and Affiliations

  1. 1.Evolutionary Medicine, Shiga Medical Center Research InstituteMoriyamaJapan
  2. 2.Department of Immunology and Genomic MedicineKyoto University Graduate School of MedicineKyotoJapan

Personalised recommendations