Combined Use of Dendritic Cells Enhances Specific Antileukemia Immunity by Leukemia Cell-Derived Heat Shock Protein 70 in a Mouse Model with Minimal Residual Leukemia Cells

Abstract

We have reported that immunotherapy using leukemia cell-derived heat shock proteins (HSPs) is effective against minimal residual disease (MRD) after syngeneic stem cell transplantation (SCT) in mice. However, leukemia patients after SCT are usually immunocompromised and immunologically tolerant to leukemia cells.We investigated whether the use of dendritic cells (DCs) in combination with HSP70 enhances cytotoxicity against B-cell leukemia cell line A20 in mice after syngeneic SCT. All unimmunized mice died of leukemia early after A20 cell inoculation, whereas mice immunized with HSP70 or HSP70-pulsed DCs survived significantly longer. Although only 60% of the HSP70-immunized mice survived, all mice immunized with HSP70-pulsed DCs survived without MRD. In addition, the cytotoxicities against A20 cells for splenocytes from mice immunized with HSP70-pulsed DCs were significantly higher than those of HSP70-immunized mice, and the cytotoxicities against A20 cells were significantly blocked by anti-CD8 antibody and by major histocompatibility complex class I antibody, but not by anti-CD4 antibody. Moreover, abnormalities were detected in neither the biochemical data nor the histopathologic findings. These findings indicate that the combined use of DCs and leukemia cell-derived HSP70 enhances the antileukemia effect by inducing the specific cytotoxicities of CD8+ cytotoxic T-cells, thereby eradicating MRD effectively and safely, even in an immunocompromised state after syngeneic SCT. This approach may thus be useful for further application of HSP in leukemia patients after autologous SCT.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Przepiorka D, Srivastava PK. Heat shock protein-peptide complexes as immunotherapy for human cancer. Mol Med Today. 1998;4:478–484.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Nieland TJF, Tan MCA, Monne-van Muijien M, Koning F, Kruisbeek AM, van Bleek GM. Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proc Natl Acad Sci U S A. 1996;93:6135–6139.

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Pockley AG. Heat shock proteins as regulators of the immune response. Lancet. 2003;362:469–476.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Srivastava PK, Udono H, Blachere N, Li Z. Heat shock proteins transfer peptide during antigen processing and CTL priming. Immunogenetics. 1994;39:93–98.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL. Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity. 1998;8:657–665.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Srivastava PK. Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol. 2002;2:185–194.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Tamura Y, Peng P, Liu K, Daou M, Srivastava PK. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science. 1997;278:117–120.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Linker CA. Autologous stem cell transplantation for acute myeloid leukemia. Bone Marrow Transplant. 2003;31:731–738.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Antman KH, Rowlings PA, Vaughan WP, et al. High-dose chemotherapy with autologous hematopoietic stem-cell support for breast cancer in North America. J Clin Oncol. 1997;15:1870–1879.

    CAS  PubMed  Google Scholar 

  10. 10.

    Brunvand MW, Bensinger WI, Soll E, et al. High-dose fractionated total-body irradiation, etoposide and cyclophosphamide for treatment of malignant lymphoma: comparison of autologous bone marrow transplantation and peripheral blood stem cells. Bone Marrow Transplant. 1996;18:131–141.

    CAS  PubMed  Google Scholar 

  11. 11.

    Margolin KA, Negrin RS, Wong KK, Chatterjee S, Wright C, Forman SJ. Cellular immunotherapy and autologous transplantation for hematologic malignancy. Immunol Rev. 1997;157:231–240.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Rosenberg SA. Progress in human tumor immunology and immunotherapy. Nature. 2001;411:380–384.

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Gilboa E. The makings of a tumor rejection antigen. Immunity. 1999;11:263–270.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Fong L, Engleman EG. Dendritic cells in cancer immunotherapy. Annu Rev Immunol. 2000;18:245–273.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Sato K, Torimoto Y, Tamura Y, et al. Immunotherapy using heat-shock protein preparations of leukemia cells after syngeneic bone marrow transplantation in mice. Blood. 2001;98:1852–1857.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–252.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Heiser A, Coleman D, Dannull J, et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest. 2002;109:409–417.

    CAS  PubMed  Google Scholar 

  18. 18.

    Buchler T, Michalek J, Kovarova L, Musilova R, Hajek R. Dendritic cell-based immunotherapy for the treatment of hematological malignancies. Hematology. 2003;8:97–104.

    Article  PubMed  Google Scholar 

  19. 19.

    Romero P, Dunbar PR, Valmori D, et al. Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T lymphocytes. J Exp Med. 1998;188:1641–1650.

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity. 2001;14:303–313.

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Chen W, Syldath U, Bellmann K, Burkart V, Kolb H. Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol. 1999;162:3212–3219.

    CAS  PubMed  Google Scholar 

  22. 22.

    Cho BK, Palliser D, Guillen E, et al. A proposed mechanism for the induction of cytotoxic T lymphocyte production by heat shock fusion proteins. Immunity. 2000;12:263–272.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Breloer M, Fleischer B, von Bonin A. In vivo and in vitro activation of T cells after administration of Ag-negative heat shock proteins. J Immunol. 1999;162:3141–3147.

    CAS  PubMed  Google Scholar 

  24. 24.

    Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a maturation signal to dendritic cells and activate the NF-κB pathway. Int Immunol. 2000;12:1539–1546.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Kim KJ, Langevin CK, Merwin RM, Sachs DH, Asfsky R. Establishment and characterization of BALB/c lymphoma lines with B cell properties. J Immunol. 1979;122:549–554.

    CAS  PubMed  Google Scholar 

  26. 26.

    Chesebro B, Wehrly K, Chesebro K, Portis J. Characterization of Ia8 antigen, Thy-1.2 antigen, complement receptors, and virus production in a group of murine virus-induced leukemia cell lines. J Immunol. 1976;117:1267–1274.

    CAS  PubMed  Google Scholar 

  27. 27.

    Corbett TH, Griswold DP Jr, Robert BJ, Peckhan JC, Schabel FM Jr. Tumor induction relationships in development of transplantable cancers of the colon in mice for chemotherapy assay, with a note on carcinogen structure. Cancer Res. 1975;35:2434–2439.

    CAS  PubMed  Google Scholar 

  28. 28.

    Cikes M, Friberg S Jr, Klein G. Progressive loss of H-2 antigens with concomitant increase of cell-surface antigen(s) determined by Moloney leukemia virus in cultured murine lymphomas. J Natl Cancer Inst. 1973;50:347–362.

    CAS  PubMed  Google Scholar 

  29. 29.

    Srivastava PK. Purification of heat shock protein-peptide complexes for use in vaccination against cancers and intracellular pathogens. Methods. 1997;12:165–171.

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Obayashi T, Tamura H, Tanaka S, et al. A new chromogenic endotoxin-specific assay using recombined Limulus coagulation enzymes and its clinical applications. Clin Chim Acta. 1985;149:55–65.

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Inaba K, Inaba M, Romani N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med. 1992;176:1693–1702.

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Uharek L, Glass B, Gaska T, Gassmann W, Loeffler H, Mueller- Ruchholts W. Influence of donor lymphocytes on the incidence of primary graft failure after allogeneic bone marrow transplantation in a murine model. Br J Haematol. 1994;88:79–87.

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Glass B, Uharek L, Zeis M, et al. Allogeneic peripheral blood progenitor cell transplantation in a murine model: evidence for an improved graft-versus-leukemia effect. Blood. 1997;90:1694–1700.

    CAS  PubMed  Google Scholar 

  34. 34.

    Frei E 3rd, Freireich EJ. Progress and perspectives in the chemotherapy of acute leukemia. Adv Chemother. 1965;2:269–298.

    CAS  PubMed  Google Scholar 

  35. 35.

    Tschopp J, Nabholz M. Perforin-mediated target cell lysis by cytolytic T lymphocytes. Annu Rev Immunol. 1990;8:279–302.

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Timmerman JM, Levy R. Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med. 1999;50:507–529.

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Ingram SB, O’Rourke MG. DC therapy for metastatic melanoma. Cytotherapy. 2004;6:148–153.

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 1998;4:328–332.

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Feng H, Zeng Y, Whitesell L, Katsanis E. Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity. Blood. 2001;97:3505–3512.

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Glass B, Uharek L, Zeis M, Loeffler H, Mueller-Ruchholtz W, Gassmann W. Graft-versus-leukaemia activity can be predicted by natural cytotoxicity against leukaemia cells. Br J Haematol. 1996;93:412–420.

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Small EJ, Fratesi P, Reese DM, et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol. 2000;18:3894–3903.

    CAS  PubMed  Google Scholar 

  42. 42.

    Banchereau J, Palucka AK, Dhodapkar M, et al. Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res. 2001;61:6451–6158.

    CAS  PubMed  Google Scholar 

  43. 43.

    Mortarini R, Anichini A, Di Nicola M, et al. Autologous dendritic cells derived from CD34+ progenitors and from monocytes are not functionally equivalent antigen-presenting cells in the induction of melan-A/Mart-1(27-35)-specific CTLs from peripheral blood lymphocytes of melanoma patients with low frequency of CTL precursors. Cancer Res. 1997;57:5534–5541.

    CAS  PubMed  Google Scholar 

  44. 44.

    Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med. 2001;193:233–238.

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Steinman RM, Turley S, Mellman I, Inaba K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med. 2000;191:411–416.

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Kuppner MC, Gastpar R, Gelwer S, et al. The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur J Immunol. 2001;31:1602–1609.

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Qiu J, Li GW, Sui YF, Song HP, Si SY, Ge W. Heat-shocked tumor cell lysate-pulsed dendritic cells induce effective anti-tumor immune response in vivo. World J Gastroenterol. 2006;12:473–478.

    CAS  PubMed  Google Scholar 

  48. 48.

    Qian J, Wang S, Yang J, et al. Targeting heat shock proteins for immunotherapy in multiple myeloma: generation of myeloma-specific CTLs using dendritic cells pulsed with tumor-derived gp96. Clin Cancer Res. 2005;11:8808–8815.

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Dai S, Wan T, Wang B, et al. More efficient induction of HLA- A*0201-restricted and carcinoembryonic antigen (CEA)-specific CTL response by immunization with exosomes prepared from heat-stressed CEA-positive tumor cells. Clin Cancer Res. 2005;11:7554–7755.

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Oki Y, Younes A. Heat shock protein-based cancer vaccines. Expert Rev Vaccines. 2004;3:403–411.

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Roskrow MA, Dilloo D, Suzuki N, Zhong W, Rooney CM, Brenner MK. Autoimmune disease induced by dendritic cell immunization against leukemia. Leuk Res. 1999;23:549–555.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yasuyuki Iuchi or Yoshihiro Torimoto or Kazuya Sato or Yasuaki Tamura or Junko Jimbo or Junki Inamura or Motohiro Shindo or Katsuya Ikuta or Kouhei Ohnishi or Yutaka Kohgo.

About this article

Cite this article

Iuchi, Y., Torimoto, Y., Sato, K. et al. Combined Use of Dendritic Cells Enhances Specific Antileukemia Immunity by Leukemia Cell-Derived Heat Shock Protein 70 in a Mouse Model with Minimal Residual Leukemia Cells. Int J Hematol 84, 449–458 (2006). https://doi.org/10.1532/IJH97.06003

Download citation

Key words

  • Leukemia
  • Immunotherapy
  • Heat shock protein
  • Dendritic cells
  • Bone marrow transplantation