Advertisement

International Journal of Hematology

, Volume 83, Issue 5, pp 391–397 | Cite as

Epidemiology and Pathologic Features of Hodgkin Lymphoma

  • Shin-ichi Nakatsuka
  • Katsuyuki Aozasa
Progress in Hematology

Abstract

Hodgkin lymphoma (HL) has unique epidemiologic characteristics. The variation in incidence according to age, sex, race, socioeconomic status, and histologic subtype suggests an etiologic heterogeneity for this tumor. Epidemiologic studies have shown that both genetic and environmental factors play a role in the pathogenesis of HL. HL is one of the Epstein-Barr virus—associated lymphomas, but the oncogenetic mechanism of HL remains to be elucidated. Recent advances in molecular biology have revealed the peculiar nature of the nodular lymphocyte predominant subtype, and as a result this disease is separated from classic types of HL in the new World Health Organization classification. Reed-Sternberg (RS) cells and lymphocytic and/or histiocytic (L&H) cells originate from germinal center B-cells. Loss of the B-cell phenotype due to down-regulation of several B-cell—specific transcription factors is characteristic of RS cells in classic HL.

Key words

Hodgkin lymphoma Nodular lymphocyte predominant Reed-Sternberg cells Germinal center B-cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stein H. Hodgkin lymphomas: introduction. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumours. Pathology & Genetics:Tumours of Haematopoietic and Lymphoid tissues. Lyon, France: IARC Press; 2001:237–239.Google Scholar
  2. 2.
    Perkins CI, Morris CR, Wright WE, Young JL Jr. Cancer Incidence and Mortality in California by Detailed Race/Ethnicity, 1988–1992. Sacramento, Calif: California Department of Health Services Surveillance Section; 1995.Google Scholar
  3. 3.
    Lambe M, Hsieh CC, Tsaih SW, Adami J, Glimelius B, Adami HO. Childbearing and the risk of Hodgkin’s disease. Cancer Epidemiol Biomarkers Prev. 1998;7:831–834.PubMedGoogle Scholar
  4. 4.
    Hjalgrim H, Askling J, Pukkala E, Hansen S, Munksgaard L, Frisch M. Incidence of Hodgkin’s disease in Nordic countries. Lancet. 2001;358:297–298.CrossRefPubMedGoogle Scholar
  5. 5.
    Chen YT, Zheng T, Chou MC, Boyle P, Holford TR. The increase of Hodgkin’s disease incidence among young adults: experience in Connecticut, 1935–1992. Cancer. 1997;79:2209–2218.CrossRefPubMedGoogle Scholar
  6. 6.
    Cartwright R, Brincker H, Carli PM, et al. The rise in incidence of lymphomas in Europe 1985–1992. Eur J Cancer. 1999;35:627–633.CrossRefPubMedGoogle Scholar
  7. 7.
    Macfarlane GJ, Evstifeeva T, Boyle P, Grufferman S. International patterns in the occurrence of Hodgkin’s disease in children and young adult males. Int J Cancer. 1995;61:165–169.CrossRefPubMedGoogle Scholar
  8. 8.
    Aozasa K, Ueda T, Tamai M, Tsujimura T. Hodgkin’s disease in Osaka, Japan (1964–1985). Eur J Cancer Clin Oncol. 1986;22:1117–1119.CrossRefPubMedGoogle Scholar
  9. 9.
    Correa P, O’Conor GT. Epidemiological patterns of Hodgkin’s disease. Int J Cancer. 1971;8:192–201.CrossRefPubMedGoogle Scholar
  10. 10.
    Gutensohn N, Cole P. Epidemiology of Hodgkin’s disease. Semin Oncol. 1980;7:92–102.PubMedGoogle Scholar
  11. 11.
    Kerzin-Storrar L, Faed MJ, MacGillivray JB, Smith PG. Incidence of familial Hodgkin’s disease. Br J Cancer. 1983;47:707–712.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mack TM, Cozen W, Shibata DK, et al. Concordance for Hodgkin’s disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease. N Engl J Med. 1995;332:413–418.CrossRefPubMedGoogle Scholar
  13. 13.
    Hors J, Dausset J. HLA and susceptibility to Hodgkin’s disease. Immunol Rev. 1983;70:167–192.CrossRefPubMedGoogle Scholar
  14. 14.
    Harty LC, Lin AY, Goldstein AM, et al. HLA-DR, HLA-DQ, and TAP genes in familial Hodgkin disease. Blood. 2002;99:690–693.CrossRefPubMedGoogle Scholar
  15. 15.
    Diepstra A, Niens M, Vellenga E, et al. Association with HLA class I in Epstein-Barr-virus-positive and with HLA class III in Epstein-Barr-virus-negative Hodgkin’s lymphoma. Lancet. 2005;365:2216–2224.CrossRefPubMedGoogle Scholar
  16. 16.
    Mueller N, Evans A, Harris NL, et al. Hodgkin’s disease and Epstein-Barr virus: altered antibody pattern before diagnosis. N Engl J Med. 1989;320:689–695.CrossRefPubMedGoogle Scholar
  17. 17.
    Cartwright RA, Watkins G. Epidemiology of Hodgkin’s disease: a review. Hematol Oncol. 2004;22:11–26.CrossRefPubMedGoogle Scholar
  18. 18.
    Tomita Y, Ohsawa M, Kanno H, et al. Epstein-Barr virus in Hodgkin’s disease patients in Japan. Cancer. 1996;77:186–192.CrossRefPubMedGoogle Scholar
  19. 19.
    Weinreb M, Day PJ, Niggli F, et al. The role of Epstein-Barr virus in Hodgkin’s disease from different geographical areas. Arch Dis Child. 1996;74:27–31.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Benharroch D, Shemer-Avni Y, Levy A, et al. New candidate virus in association with Hodgkin’s disease. Leuk Lymphoma. 2003;44:605–610.CrossRefPubMedGoogle Scholar
  21. 21.
    Spina M, Berretta M, Tirelli U. Hodgkin’s disease in HIV. Hematol Oncol Clin North Am. 2003;17:843–858.CrossRefPubMedGoogle Scholar
  22. 22.
    Hansmann ML, Stein H, Fellbaum C, Hui PK, Parwaresch MR, Lennert K. Nodular paragranuloma can transform into high-grade malignant lymphoma of B type. Hum Pathol. 1989;20:1169–1175.CrossRefPubMedGoogle Scholar
  23. 23.
    Stein H, Marafioti T, Foss HD, et al. Down-regulation of BOB.1/OBF.1 and Oct2 in classical Hodgkin disease but not in lymphocyte predominant Hodgkin disease correlates with immunoglobulin transcription. Blood. 2001;97:496–501.CrossRefPubMedGoogle Scholar
  24. 24.
    Torlakovic E, Tierens A, Dang HD, Delabie J. The transcription factor PU.1, necessary for B-cell development is expressed in lymphocyte predominance, but not classical Hodgkin’s disease. Am J Pathol. 2001;159:1807–1814.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Braeuninger A, Kuppers R, Strickler JG, Wacker HH, Rajewsky K, Hansmann ML. Hodgkin and Reed-Sternberg cells in lymphocyte predominant Hodgkin disease represent clonal populations of germinal center-derived tumor B cells. Proc Natl Acad Sci U S A. 1997;94:9337–9342.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Marafioti T, Hummel M, Anagnostopoulos I, et al. Origin of nodular lymphocyte-predominant Hodgkin’s disease from a clonal expansion of highly mutated germinal-center B cells. N Engl J Med. 1997;337:453–458.CrossRefPubMedGoogle Scholar
  27. 27.
    Marafioti T, Hummel M, Foss HD, et al. Hodgkin and Reed-Sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood. 2000;95:1443–1450.PubMedGoogle Scholar
  28. 28.
    Kanzler H, Kuppers R, Hansmann ML, Rajewsky K. Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med. 1996;184:1495–1505.CrossRefPubMedGoogle Scholar
  29. 29.
    Thomas RK, Re D, Wolf J, Diehl V. Part I: Hodgkin’s lymphoma—molecular biology of Hodgkin and Reed-Sternberg cells. Lancet Oncol. 2004;5:11–18.CrossRefPubMedGoogle Scholar
  30. 30.
    Brauninger A, Hansmann ML, Strickler JG, et al. Identification of common germinal-center B-cell precursors in two patients with both Hodgkin’s disease and non-Hodgkin’s lymphoma. N Engl J Med. 1999;340:1239–1247.CrossRefPubMedGoogle Scholar
  31. 31.
    Marafioti T, Hummel M, Anagnostopoulos I, Foss HD, Huhn D, Stein H. Classical Hodgkin’s disease and follicular lymphoma originating from the same germinal center B cell. J Clin Oncol.1999;17:3804–3809.CrossRefPubMedGoogle Scholar
  32. 32.
    Seitz V, Hummel M, Marafioti T, Anagnostopoulos I, Assaf C, Stein H. Detection of clonal T-cell receptor gamma-chain gene rearrangements in Reed-Sternberg cells of classic Hodgkin disease. Blood. 2000;95:3020–3024.PubMedGoogle Scholar
  33. 33.
    Diehl V, Sextro M, Franklin J, et al. Clinical presentation, course, and prognostic factors in lymphocyte-predominant Hodgkin’s disease and lymphocyte-rich classical Hodgkin’s disease: report from the European Task Force on Lymphoma Project on Lymphocyte-Predominant Hodgkin’s Disease. J Clin Oncol. 1999;17:776–783.CrossRefPubMedGoogle Scholar
  34. 34.
    Rowlings PA, Curtis RE, Passweg JR, et al. Increased incidence of Hodgkin’s disease after allogeneic bone marrow transplantation. J Clin Oncol. 1999;17:3122–3127.CrossRefPubMedGoogle Scholar
  35. 35.
    Kamel OW, Weiss LM, van de Rijn M, Colby TV, Kingma DW, Jaffe ES. Hodgkin’s disease and lymphoproliferations resembling Hodgkin’s disease in patients receiving long-term low-dose methotrexate therapy. Am J Surg Pathol. 1996;20:1279–1287.CrossRefPubMedGoogle Scholar
  36. 36.
    Salloum E, Cooper DL, Howe G, et al. Spontaneous regression of lymphoproliferative disorders in patients treated with methotrexate for rheumatoid arthritis and other rheumatic diseases. J Clin Oncol. 1996;14:1943–1949.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2006

Authors and Affiliations

  1. 1.Department of Clinical LaboratoryNational Hospital Organization Osaka Minami Medical CenterOsakaJapan
  2. 2.Department of Pathology (C3)Osaka University Graduate School of MedicineOsakaJapan

Personalised recommendations