Advertisement

International Journal of Hematology

, Volume 83, Issue 4, pp 351–355 | Cite as

Antibody Responses Associated with the Graft-versus-Leukemia Effect in Adult T-Cell Leukemia

  • Masakatsu Hishizawa
  • Kazunori Imada
  • Tomomi Sakai
  • Momoko Nishikori
  • Nobuyoshi Arima
  • Mitsuru Tsudo
  • Takayuki Ishikawa
  • Takashi Uchiyama
Case Report

Abstract

Adult T-cell leukemia (ATL) is a peripheral T-cell neoplasm caused by human T-cell leukemia virus type 1 (HTLV-1). The prognosis of ATL, especially the acute and lymphoma subtypes, is poor with conventional and high-dose chemotherapy. The effectiveness of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for ATL has been reported, suggesting the presence of a graft-versus-leukemia (GVL) effect against this malignancy.To identify the target antigens associated with tumor rejection, we used SEREX (serological identification of antigens by recombinant cDNA expression cloning) to screen ATL complementary DNA expression libraries with sera from an ATL patient who had a GVL response after allo-HSCT. Among the isolated clones, autocrine motility factor receptor (AMFR), which encodes a glycosylated transmembrane protein, was found to have selective reactivity with the sera obtained during tumor regression. Real-time reverse transcription polymerase chain reaction analysis for AMFR showed highest expression in the testis among normal tissues. Furthermore, aberrant AMFR expression was found in at least some ATL patients.Taken together, these findings suggest that AMFR may be one of the GVL antigens that provoke effective antitumor immunity against ATL in allogeneic settings.

Key words

SEREX Adult T-cell leukemia Allogeneic hematopoietic stem cell transplantation Graft-versus-leukemia effect AMFR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Uchiyama T, Yodoi J, Sagawa K, Takatsuki K, Uchino H. Adult T- cell leukemia: clinical and hematologic features of 16 cases. Blood. 1977;50:481–92.Google Scholar
  2. 2.
    Shimoyama M, Ota K, Kikuchi M, et al. Major prognostic factors of adult patients with advanced T-cell lymphoma/leukemia. J Clin Oncol. 1988;6:1088–1097.CrossRefGoogle Scholar
  3. 3.
    Utsunomiya A, Miyazaki Y, Takatsuka Y, et al. Improved outcome of adult T cell leukemia/lymphoma with allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2001;27:15–20.CrossRefGoogle Scholar
  4. 4.
    Kami M, Hamaki T, Miyakoshi S, et al. Allogeneic haematopoietic stem cell transplantation for the treatment of adult T-cell leukaemia/lymphoma. Br J Haematol. 2003;120:304–309.CrossRefGoogle Scholar
  5. 5.
    Okamura J, Utsunomiya A, Tanosaki R, et al. Allogeneic stem-cell transplantation with reduced conditioning intensity as a novel immunotherapy and antiviral therapy for adult T-cell leukemia/lymphoma. Blood. 2005;105:4143–4145.CrossRefGoogle Scholar
  6. 6.
    Fukushima T, Miyazaki Y, Honda S, et al. Allogeneic hematopoietic stem cell transplantation provides sustained long-term survival for patients with adult T-cell leukemia/lymphoma. Leukemia. 2005;19:829–834.CrossRefGoogle Scholar
  7. 7.
    Hishizawa M, Imada K, Ishikawa T, Uchiyama T. Kinetics of proviral DNA load, soluble interleukin-2 receptor level and tax expression in patients with adult T-cell leukemia receiving allogeneic stem cell transplantation. Leukemia. 2004;18:167–169.CrossRefGoogle Scholar
  8. 8.
    Sahin U, Tureci O, Schmitt H, et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci U S A. 1995;92:11810–11813.CrossRefGoogle Scholar
  9. 9.
    Watanabe H, Carmi P, Hogan V, et al. Purification of human tumor cell autocrine motility factor and molecular cloning of its receptor. J Biol Chem. 1991;266:13442–13448.Google Scholar
  10. 10.
    Koga H, Imada K, Ueda M, Hishizawa M, Uchiyama T. Identification of differentially expressed molecules in adult T-cell leukemia cells proliferating in vivo. Cancer Sci. 2004;95:411–417.CrossRefGoogle Scholar
  11. 11.
    Kiniwa Y, Fujita T, Akada M, et al. Tumor antigens isolated from a patient with vitiligo and T-cell-infiltrated melanoma. Cancer Res. 2001;61:7900–7907.Google Scholar
  12. 12.
    Hishizawa M, Imada K, Sakai T, Ueda M, Hori T, Uchiyama T. Serological identification of adult T-cell leukaemia-associated antigens. Br J Haematol. 2005;130:382–390.CrossRefGoogle Scholar
  13. 13.
    Bellucci R, Wu CJ, Chiaretti S, et al. Complete response to donor lymphocyte infusion in multiple myeloma is associated with antibody responses to highly expressed antigens. Blood. 2004;103:656–663.CrossRefGoogle Scholar
  14. 14.
    Hishizawa M, Imada K, Sakai T, Ueda M, Uchiyama T. Identification of APOBEC3B as a potential target for the graft-versus-lym-phoma effect by SEREX in a patient with mantle cell lymphoma. Br J Haematol. 2005;130:418–421.CrossRefGoogle Scholar
  15. 15.
    Lossos IS, Jones CD, Warnke R, et al. Expression of a single gene, BCL-6, strongly predicts survival in patients with diffuse large B-cell lymphoma. Blood. 2001;98:945–951.CrossRefGoogle Scholar
  16. 16.
    Jutras I, Reudelhuber TL. Prorenin processing by cathepsin B in vitro and in transfected cells. FEBS Lett. 1999;443:48–52.CrossRefGoogle Scholar
  17. 17.
    Moin K, Day NA, Sameni M, Hasnain S, Hirama T, Sloane BF. Human tumour cathepsin B: comparison with normal liver cathepsin B. Biochem J. 1992;285:427–434.CrossRefGoogle Scholar
  18. 18.
    Mach L, Schwihla H, Stuwe K, Rowan AD, Mort JS, Glossl J. Activation of procathepsin B in human hepatoma cells: the conversion into the mature enzyme relies on the action of cathepsin B itself. Biochem J. 1993;293:437–442.CrossRefGoogle Scholar
  19. 19.
    Hirai K, Yokoyama M, Asano G, Tanaka S. Expression of cathepsin B and cystatin C in human colorectal cancer. Hum Pathol.1999;30:680–686.CrossRefGoogle Scholar
  20. 20.
    Werle B, Kraft C, Lah TT, et al. Cathepsin B in infiltrated lymph nodes is of prognostic significance for patients with nonsmall cell lung carcinoma. Cancer. 2000;89:2282–2291.CrossRefGoogle Scholar
  21. 21.
    Eijan AM, Sandes EO, Riveros MD, et al. High expression of cathepsin B in transitional bladder carcinoma correlates with tumor invasion. Cancer. 2003;98:262–268.CrossRefGoogle Scholar
  22. 22.
    Liotta LA, Mandler R, Murano G, et al. Tumor cell autocrine motility factor. Proc Natl Acad Sci U S A. 1986;83:3302–3306.CrossRefGoogle Scholar
  23. 23.
    Harashima N, Kurihara K, Utsunomiya A, et al. Graft-versus-Tax response in adult T-cell leukemia patients after hematopoietic stem cell transplantation. Cancer Res. 2004;64:391–399.CrossRefGoogle Scholar
  24. 24.
    Franchini G, Wong-Staal F, Gallo RC. Human T-cell leukemia virus (HTLV-I) transcripts in fresh and cultured cells of patients with adult T-cell leukemia. Proc Natl Acad Sci U S A. 1984;81:6207–6211.CrossRefGoogle Scholar
  25. 25.
    Kinoshita T, Shimoyama M, Tobinai K, et al. Detection of mRNA for the tax1/rex1 gene of human T-cell leukemia virus type I in fresh peripheral blood mononuclear cells of adult T-cell leukemia patients and viral carriers by using the polymerase chain reaction. Proc Natl Acad Sci U S A. 1989;86:5620–5624.CrossRefGoogle Scholar
  26. 26.
    Kannagi M, Harada S, Maruyama I, et al. Predominant recognition of human T cell leukemia virus type I (HTLV-I) pX gene products by human CD8+ cytotoxic T cells directed against HTLV-I—infected cells. Int Immunol. 1991;3:761–767.CrossRefGoogle Scholar
  27. 27.
    Tanaka Y, Oda S, Nagata K, et al. Immunological functions and phenotypes of peripheral blood lymphocytes from human T-cell leukemia virus-I carriers. J Clin Immunol. 1989;9:477–484.CrossRefGoogle Scholar
  28. 28.
    Hishizawa M, Imada K, Kitawaki T, Ueda M, Kadowaki N, Uchiyama T. Depletion and impaired interferon-alpha-producing capacity of blood plasmacytoid dendritic cells in human T-cell leukaemia virus type I-infected individuals. Br J Haematol. 2004;125:568–575.CrossRefGoogle Scholar
  29. 29.
    Nakamori S, Watanabe H, Kameyama M, et al. Expression of autocrine motility factor receptor in colorectal cancer as a predictor for disease recurrence. Cancer. 1994;74:1855–1862.CrossRefGoogle Scholar
  30. 30.
    Otto T, Birchmeier W, Schmidt U, et al. Inverse relation of E-cadherin and autocrine motility factor receptor expression as a prognostic factor in patients with bladder carcinomas. Cancer Res. 1994;54:3120–3123.Google Scholar
  31. 31.
    Maruyama K, Watanabe H, Shiozaki H, et al. Expression of autocrine motility factor receptor in human esophageal squamous cell carcinoma. Int J Cancer. 1995;64:316–321.CrossRefGoogle Scholar
  32. 32.
    Taniguchi K, Yonemura Y, Nojima N, et al. The relation between the growth patterns of gastric carcinoma and the expression of hepatocyte growth factor receptor (c-met), autocrine motility factor receptor, and urokinase-type plasminogen activator receptor. Cancer. 1998;82:2112–2122.CrossRefGoogle Scholar
  33. 33.
    Ohta Y, Minato H, Tanaka Y, Go T, Oda M, Watanabe Y. Autocrine motility factor receptor expression associates with tumor progression in thymoma. Int J Oncol. 2000;17:259–264.Google Scholar
  34. 34.
    Takanami I, Takeuchi K, Watanabe H, Yanagawa T, Takagishi K, Raz A. Significance of autocrine motility factor receptor gene expression as a prognostic factor in non-small-cell lung cancer. Int J Cancer. 2001;95:384–387.CrossRefGoogle Scholar
  35. 35.
    Bellucci R, Alyea EP, Chiaretti S, et al. Graft-versus-tumor response in patients with multiple myeloma is associated with antibody response to BCMA, a plasma-cell membrane receptor. Blood. 2005;105:3945–3950.CrossRefGoogle Scholar
  36. 36.
    Zhang M, Zhang Z, Garmestani K, et al. Activating Fc receptors are required for antitumor efficacy of the antibodies directed toward CD25 in a murine model of adult T-cell leukemia. Cancer Res. 2004;64:5825–5829.CrossRefGoogle Scholar
  37. 37.
    Zhang Z, Zhang M, Goldman CK, Ravetch JV, Waldmann TA. Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD52 monoclonal antibody, Campath-1H. Cancer Res. 2003;63:6453–6457.Google Scholar
  38. 38.
    Zhang Z, Zhang M, Ravetch JV,Goldman C,Waldmann TA. Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD2 monoclonal antibody, MEDI-507. Blood. 2003;102:284–288.CrossRefGoogle Scholar
  39. 39.
    Ishida T, Iida S, Akatsuka Y, et al. The CC chemokine receptor 4 as a novel specific molecular target for immunotherapy in adult T-cell leukemia/lymphoma. Clin Cancer Res. 2004;10:7529–7539.CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2006

Authors and Affiliations

  • Masakatsu Hishizawa
    • 1
  • Kazunori Imada
    • 1
  • Tomomi Sakai
    • 1
  • Momoko Nishikori
    • 1
  • Nobuyoshi Arima
    • 2
  • Mitsuru Tsudo
    • 2
  • Takayuki Ishikawa
    • 1
  • Takashi Uchiyama
    • 1
  1. 1.Department of Hematology and Oncology, Graduate School of MedicineKyoto UniversityKyoto
  2. 2.Third Department of Internal MedicineOsaka Red Cross HospitalOsakaJapan

Personalised recommendations