International Journal of Hematology

, Volume 82, Issue 4, pp 285–294 | Cite as

Notch Signaling in Hematopoietic Stem Cells



The molecular basis of the hematopoietic stem cell (HSC) “niche” has gradually been elucidated. This new knowledge may help us understand how the self-renewal of HSCs is physiologically regulated and may give us clues for developing methods for ex vivo HSC expansion. The Notch pathway is an environmental signaling system that may play an important role in the HSC niche. In this review, we focus on the role of Notch signaling in the regulation of hematopoietic stem and progenitor cells in both embryo and adult hematopoiesis and clarify what is known regarding the self-renewal of HSCs.

Key words

Notch Hematopoietic stem cell Hematopoietic development Niche 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell.Blood Cells. 1978;4:7–25.Google Scholar
  2. 2.
    Heike T, Nakahata T. Ex vivo expansion of hematopoietic stem cells by cytokines.Biochim BiophysActa. 2002;1592:313–321.Google Scholar
  3. 3.
    Sorrentino BP. Clinical strategies for expansion of haematopoietic stem cells.Nat Rev Immunol. 2004;4:878–888.Google Scholar
  4. 4.
    Sadlon TJ, Lewis ID, D’Andrea RJ. BMP4: its role in development of the hematopoietic system and potential as a hematopoietic growth factor.Stem Cells. 2004;22:457–474.Google Scholar
  5. 5.
    Bhatia M, Bonnet D, Wu D, et al. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells.J Exp Med. 1999;189:1139–1148.Google Scholar
  6. 6.
    Gerber HP, Malik AK, Solar GP, et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism.Nature. 2002;417:954–958.Google Scholar
  7. 7.
    Reya T, Duncan AW, Ailles L, et al. A role forWnt signalling in self-renewal of haematopoietic stem cells.Nature. 2003;423:409–414.Google Scholar
  8. 8.
    Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors.Nature. 2003;423:448–452.Google Scholar
  9. 9.
    Bhardwaj G, Murdoch B, Wu D, et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation.Nat Immunol. 2001;2:172–180.Google Scholar
  10. 10.
    Kobune M, Ito Y, Kawano Y, et al. Indian hedgehog gene transfer augments hematopoietic support of human stromal cells including NOD/SCID-β2m-/- repopulating cells.Blood. 2004;104:1002–1009.Google Scholar
  11. 11.
    Arai F, Hirao A, Ohmura M, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche.Cell. 2004;118:149–161.Google Scholar
  12. 12.
    Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche.Nature. 2003;425:841–846.Google Scholar
  13. 13.
    Stier S, Ko Y, Forkert R, et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size.J Exp Med. 2005;201:1781–1791.Google Scholar
  14. 14.
    Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency.Blood. 2004;103:3258–3264.Google Scholar
  15. 15.
    Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size.Nature. 2003;425:836–841.Google Scholar
  16. 16.
    Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development.Science. 1999;284:770–776.Google Scholar
  17. 17.
    Molofsky AV, Pardal R, Morrison SJ. Diverse mechanisms regulate stem cell self-renewal.Curr Opin Cell Biol. 2004;16:700–707.Google Scholar
  18. 18.
    Ohishi K, Katayama N, Shiku H, Varnum-Finney B, Bernstein ID. Notch signalling in hematopoiesis.Semin Cell Dev Biol. 2003;14:143–150.Google Scholar
  19. 19.
    Radtke F, Clevers H. Self-renewal and cancer of the gut: two sides of a coin.Science. 2005;307:1904–1909.Google Scholar
  20. 20.
    Yoon K, Gaiano N. Notch signaling in the mammalian central nervous system: insights from mouse mutants.Nat Neurosci. 2005;8:709–715.Google Scholar
  21. 21.
    Baron M. An overview of the Notch signalling pathway.Semin Cell Dev Biol. 2003;14:113–119.Google Scholar
  22. 22.
    Lai EC. Notch signaling: control of cell communication and cell fate.Development. 2004;131:965–973.Google Scholar
  23. 23.
    Kojika S, Griffin JD. Notch receptors and hematopoiesis.Exp Hematol. 2001;29:1041–1052.Google Scholar
  24. 24.
    Ohishi K, Varnum-Finney B, Bernstein ID. The notch pathway: modulation of cell fate decisions in hematopoiesis.Int J Hematol. 2002;75:449–459.Google Scholar
  25. 25.
    Delassus S, Cumano A. Circulation of hematopoietic progenitors in the mouse embryo.Immunity. 1996;4:97–106.Google Scholar
  26. 26.
    Godin I, Dieterlen-Lievre F, Cumano A. Emergence of multipotent hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus.Proc Natl Acad Sci USA. 1995;92:773–777.Google Scholar
  27. 27.
    Cumano A, Dieterlen-Lievre F, Godin I. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura.Cell. 1996;86:907–916.Google Scholar
  28. 28.
    Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region.Cell. 1996;86:897–906.Google Scholar
  29. 29.
    Muller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E. Development of hematopoietic stem cell activity in the mouse embryo.Immunity. 1994;1:291–301.Google Scholar
  30. 30.
    Suda T, Takakura N, Oike Y. Hematopoiesis and angiogenesis.Int J Hematol. 2000;71:99–107.Google Scholar
  31. 31.
    Takakura N, Watanabe T, Suenobu S, et al. A role for hematopoietic stem cells in promoting angiogenesis.Cell. 2000;102:199–209.Google Scholar
  32. 32.
    Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G. A common precursor for hematopoietic and endothelial cells.Development. 1998;125:725–732.Google Scholar
  33. 33.
    Nishikawa SI, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H. Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages.Development. 1998;125:1747–1757.Google Scholar
  34. 34.
    Conlon RA, Reaume AG, Rossant J. Notch1 is required for the coordinate segmentation of somites.Development. 1995;121:1533–1545.Google Scholar
  35. 35.
    Gridley T. Notch signaling during vascular development.Proc Natl Acad Sci USA. 2001;98:5377–5378.Google Scholar
  36. 36.
    Jiang R, Lan Y, Chapman HD, et al. Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice.Genes Dev. 1998;12:1046–1057.Google Scholar
  37. 37.
    Krebs LT, Xue Y, Norton CR, et al. Notch signaling is essential for vascular morphogenesis in mice.Genes Dev. 2000;14:1343–1352.Google Scholar
  38. 38.
    Krebs LT, Xue Y, Norton CR, et al. Characterization ofNotch3- deficient mice: normal embryonic development and absence of genetic interactions with aNotch1 mutation.Genesis. 2003;37:139–143.Google Scholar
  39. 39.
    Kumano K, Chiba S, Kunisato A, et al. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells.Immunity. 2003;18:699–711.Google Scholar
  40. 40.
    Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T. Notch1 is essential for postimplantation development in mice.Genes Dev. 1994;8:707–719.Google Scholar
  41. 41.
    Xue Y, Gao X, Lindsell CE, et al. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1.Hum Mol Genet. 1999;8:723–730.Google Scholar
  42. 42.
    Iso T, Hamamori Y, Kedes L. Notch signaling in vascular development.Arterioscler Thromb Vasc Biol. 2003;23:543–553.Google Scholar
  43. 43.
    Hamada Y, Kadokawa Y, Okabe M, Ikawa M, Coleman JR, Tsujimoto Y. Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality.Development. 1999;126:3415–3424.Google Scholar
  44. 44.
    Duarte A, Hirashima M, Benedito R, et al. Dosage-sensitive requirement for mouse Dll4 in artery development.Genes Dev. 2004;18:2474–2478.Google Scholar
  45. 45.
    Gale NW, Dominguez MG, Noguera I, et al. Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development.Proc Natl Acad Sci USA. 2004;101:15949–15954.Google Scholar
  46. 46.
    Krebs LT, Shutter JR, Tanigaki K, Honjo T, Stark KL, Gridley T. Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants.Genes Dev. 2004;18:2469–2473.Google Scholar
  47. 47.
    Hadland BK, Huppert SS, Kanungo J, et al. A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development.Blood. 2004;104:3097–3105.Google Scholar
  48. 48.
    Robert-Moreno A, Espinosa L, de la Pompa JL, Bigas A. RBPjk-dependent Notch function regulatesGata2 and is essential for the formation of intra-embryonic hematopoietic cells.Development. 2005;132:1117–1126.Google Scholar
  49. 49.
    Shivdasani RA, Mayer EL, Orkin SH. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL.Nature. 1995;373:432–434.Google Scholar
  50. 50.
    Warren AJ, Colledge WH, Carlton MB, Evans MJ, Smith AJ, Rabbitts TH. The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development.Cell. 1994;78:45–57.Google Scholar
  51. 51.
    Tsai FY, Keller G, Kuo FC, et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2.Nature. 1994;371:221–226.Google Scholar
  52. 52.
    Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis.Cell. 1996;84:321–330.Google Scholar
  53. 53.
    Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA. Disruption of theCbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis.Proc Natl Acad Sci USA. 1996;93:3444–3449.Google Scholar
  54. 54.
    Cai Z, de Bruijn M, Ma X, et al. Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo.Immunity. 2000;13:423–431.Google Scholar
  55. 55.
    Saito T, Chiba S, Ichikawa M, et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development.Immunity. 2003;18:675–685.Google Scholar
  56. 56.
    Hrabe de Angelis M, McIntyre J 2nd, Gossler A. Maintenance of somite borders in mice requires the Delta homologue DII1.Nature. 1997;386:717–721.Google Scholar
  57. 57.
    Przemeck GK, Heinzmann U, Beckers J, Hrabe de Angelis M. Node and midline defects are associated with left-right development inDelta1 mutant embryos.Development. 2003;130:3–13.Google Scholar
  58. 58.
    Milner LA, Kopan R, Martin DI, Bernstein ID. A human homologue of theDrosophila developmental gene, Notch, is expressed in CD34+ hematopoietic precursors.Blood. 1994;83:2057–2062.Google Scholar
  59. 59.
    Bigas A, Martin DI, Milner LA. Notch1 and Notch2 inhibit myeloid differentiation in response to different cytokines.Mol Cell Biol. 1998;18:2324–2333.Google Scholar
  60. 60.
    Kumano K, Chiba S, Shimizu K, et al. Notch1 inhibits differentiation of hematopoietic cells by sustaining GATA-2 expression.Blood. 2001;98:3283–3289.Google Scholar
  61. 61.
    Milner LA, Bigas A, Kopan R, Brashem-Stein C, Bernstein ID, Martin DI. Inhibition of granulocytic differentiation bymNotch1.Proc Natl Acad Sci USA. 1996;93:13014–13019.Google Scholar
  62. 62.
    Varnum-Finney B, Xu L, Brashem-Stein C, et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling.Nat Med. 2000;6:1278–1281.Google Scholar
  63. 63.
    Stier S, Cheng T, Dombkowski D, Carlesso N, Scadden DT. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome.Blood. 2002;99:2369–2378.Google Scholar
  64. 64.
    Kunisato A, Chiba S, Nakagami-Yamaguchi E, et al. HES-1 preserves purified hematopoietic stem cells ex vivo and accumulates side population cells in vivo.Blood. 2003;101:1777–1783.Google Scholar
  65. 65.
    Duncan AW, Rattis FM, DiMascio LN, et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance.Nat Immunol. 2005;6:314–322.Google Scholar
  66. 66.
    Radtke F, Wilson A, Stark G, et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1.Immunity. 1999;10:547–558.Google Scholar
  67. 67.
    Mancini SJ, Mantei N, Dumortier A, Suter U, Macdonald HR, Radtke F. Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation.Blood. 2005;105:2340–2342.Google Scholar
  68. 68.
    Saito T, Chiba S, Hirai H. Analysis of Notch2 conditional knockout mice: Notch2 deficient bone marrow cells can reconstitute both to lymphoid and myeloid lineages [abstract].Blood. 2001;98:68a.Google Scholar
  69. 69.
    Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche.Cell. 2004;116:769–778.Google Scholar
  70. 70.
    Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche.Nature. 2001;414:98–104.Google Scholar
  71. 71.
    Carlesso N, Aster JC, Sklar J, Scadden DT. Notch1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics.Blood. 1999;93:838–848.Google Scholar
  72. 72.
    Dando JS, Tavian M, Catelain C, et al. Notch/Delta4 interaction in human embryonic liver CD34+ CD38- cells: positive influence on BFU-E production and LTC-IC potential maintenance.Stem Cells. 2005;23:550–560.Google Scholar
  73. 73.
    Han W, Ye Q, Moore MA. A soluble form of human Delta-like-1 inhibits differentiation of hematopoietic progenitor cells.Blood. 2000;95:1616–1625.Google Scholar
  74. 74.
    Jones P, May G, Healy L, et al. Stromal expression of Jagged 1 promotes colony formation by fetal hematopoietic progenitor cells.Blood. 1998;92:1505–1511.Google Scholar
  75. 75.
    Karanu FN, Murdoch B, Gallacher L, et al. The Notch ligand Jagged-1 represents a novel growth factor of human hematopoietic stem cells.J Exp Med. 2000;192:1365–1372.Google Scholar
  76. 76.
    Karanu FN, Murdoch B, Miyabayashi T, et al. Human homologues of Delta-1 and Delta-4 function as mitogenic regulators of primitive human hematopoietic cells.Blood. 2001;97:1960–1967.Google Scholar
  77. 77.
    Lauret E, Catelain C, Titeux M, et al. Membrane-bound Delta-4 Notch ligand reduces the proliferative activity of primitive human hematopoietic CD34+ CD38low cells while maintaining their LTCIC potential.Leukemia. 2004;18:788–797.Google Scholar
  78. 78.
    Ohishi K, Varnum-Finney B, Bernstein ID. Delta-1 enhances marrow and thymus repopulating ability of human CD34+CD38- cord blood cells.J Clin Invest. 2002;110:1165–1174.Google Scholar
  79. 79.
    Tsai S, Fero J, Bartelmez S. Mouse Jagged2 is differentially expressed in hematopoietic progenitors and endothelial cells and promotes the survival and proliferation of hematopoietic progenitors by direct cell-to-cell contact.Blood. 2000;96:950–957.Google Scholar
  80. 80.
    Varnum-Finney B, Brashem-Stein C, Bernstein ID. Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability.Blood. 2003;101:1784–1789.Google Scholar
  81. 81.
    Varnum-Finney B, Purton LE, Yu M, et al. The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells.Blood. 1998;91:4084–4091.Google Scholar
  82. 82.
    Vas V, Szilagyi L, Paloczi K, Uher F. Soluble Jagged-1 is able to inhibit the function of its multivalent form to induce hematopoietic stem cell self-renewal in a surrogate in vitro assay.J Leukoc Biol. 2004;75:714–720.Google Scholar
  83. 83.
    Walker L, Lynch M, Silverman S, et al. The Notch/Jagged pathway inhibits proliferation of human hematopoietic progenitors in vitro.Stem Cells. 1999;17:162–171.Google Scholar
  84. 84.
    Varnum-Finney B, Wu L, Yu M, et al. Immobilization of Notch ligand, Delta-1, is required for induction of notch signaling.J Cell Sci. 2000;113(pt 23):4313–4318.Google Scholar
  85. 85.
    Hukriede NA, Gu Y, Fleming RJ. A dominant-negative form of Serrate acts as a general antagonist of Notch activation.Development. 1997;124:3427–3437.Google Scholar
  86. 86.
    Li L, Milner LA, Deng Y, et al. The human homolog of rat Jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1.Immunity. 1998;8:43–55.Google Scholar
  87. 87.
    Morrison SJ, Perez SE, Qiao Z, et al. Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells.Cell. 2000;101:499–510.Google Scholar
  88. 88.
    Qi H, Rand MD, Wu X, et al. Processing of the Notch ligand Delta by the metalloprotease Kuzbanian.Science. 1999;283:91–94.Google Scholar
  89. 89.
    Shimizu K, Chiba S, Saito T, et al. Integrity of intracellular domain of Notch ligand is indispensable for cleavage required for release of the Notch2 intracellular domain.EMBO J. 2002;21:294–302.Google Scholar
  90. 90.
    Sun X, Artavanis-Tsakonas S. Secreted forms of DELTA and SERRATE define antagonists of Notch signaling inDrosophila.Development. 1997;124:3439–3448.Google Scholar
  91. 91.
    Lefort K, Dotto GP. Notch signaling in the integrated control of keratinocyte growth/differentiation and tumor suppression.Semin Cancer Biol. 2004;14:374–386.Google Scholar
  92. 92.
    Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S. Notch signals control the fate of immature progenitor cells in the intestine.Nature. 2005;435:964–968.Google Scholar
  93. 93.
    van Es JH, van Gijn ME, Riccio O, et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells.Nature. 2005;435:959–963.Google Scholar
  94. 94.
    Conboy IM, Conboy MJ, Smythe GM, Rando TA. Notch-mediated restoration of regenerative potential to aged muscle.Science. 2003;302:1575–1577.Google Scholar
  95. 95.
    Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment.Nature. 2005;433:760–764.Google Scholar
  96. 96.
    Anastasi E, Campese AF, Bellavia D, et al. Expression of activated Notch3 in transgenic mice enhances generation of T regulatory cells and protects against experimental autoimmune diabetes.J Immunol. 2003;171:4504–4511.Google Scholar
  97. 97.
    Bellavia D, Campese AF, Alesse E, et al. Constitutive activation of NF-kB and T-cell leukemia/lymphoma in Notch3 transgenic mice.EMBO J. 2000;19:3337–3348.Google Scholar
  98. 98.
    Cheng P, Nefedova Y, Miele L, Osborne BA, Gabrilovich D. Notch signaling is necessary but not sufficient for differentiation of dendritic cells.Blood. 2003;102:3980–3988.Google Scholar
  99. 99.
    Cheng P, Zlobin A, Volgina V, et al. Notch-1 regulates NF-kB activity in hemopoietic progenitor cells.J Immunol. 2001;167:4458–4467.Google Scholar
  100. 100.
    Deftos ML, Huang E, Ojala EW, Forbush KA, Bevan MJ. Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes.Immunity. 2000;13:73–84.Google Scholar
  101. 101.
    Fowlkes BJ, Robey EA. A reassessment of the effect of activated Notch1 on CD4 and CD8 T cell development.J Immunol. 2002;169:1817–1821.Google Scholar
  102. 102.
    Hozumi K, Negishi N, Suzuki D, et al. Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo.Nat Immunol. 2004;5:638–644.Google Scholar
  103. 103.
    Radtke F, Ferrero I, Wilson A, Lees R, Aguet M, MacDonald HR. Notch1 deficiency dissociates the intrathymic development of dendritic cells and T cells.J Exp Med. 2000;191:1085–1094.Google Scholar
  104. 104.
    Robey E, Chang D, Itano A, et al. An activated form of Notch influences the choice between CD4 and CD8 T cell lineages.Cell. 1996;87:483–492.Google Scholar
  105. 105.
    Washburn T, Schweighoffer E, Gridley T, et al. Notch activity influences the alphabeta versus gammadelta T cell lineage decision.Cell. 1997;88:833–843.Google Scholar
  106. 106.
    Wilson A, Ferrero I, MacDonald HR, Radtke F.. 1 Cutting edge: an essential role for Notch-1 in the development of both thymus-independent and -dependent T cells in the gut.J Immunol. 2000;165:5397–5400.Google Scholar
  107. 107.
    Witt CM, Won WJ, Hurez V, Klug CA. Notch2 haploinsufficiency results in diminished B1 B cells and a severe reduction in marginal zone B cells.J Immunol. 2003;171:2783–2788.Google Scholar
  108. 108.
    Wolfer A, Bakker T, Wilson A, et al. Inactivation of Notch 1 in immature thymocytes does not perturb CD4 or CD8 T cell development.Nat Immunol. 2001;2:235–241.Google Scholar
  109. 109.
    Wolfer A, Wilson A, Nemir M, MacDonald HR, Radtke F. Inactivation of Notch1 impairs VDJβ rearrangement and allows pre-TCR-independent survival of early αβ lineage thymocytes.Immunity. 2002;16:869–879.Google Scholar

Copyright information

© The Japanese Society of Hematology 2005

Authors and Affiliations

  1. 1.Department of Regeneration Medicine for HematopoiesisGraduate School of Medicine, University of TokyoJapan
  2. 2.Department of Cell Therapy and Transplantation MedicineUniversity of Tokyo HospitalTokyoJapan

Personalised recommendations