Skip to main content
Log in

Senescence of Hematopoietic Stem Cells and Bone Marrow Failure

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Functional failure in hematopoietic stem cells (HSCs) may bring fatal consequences because HSCs are the ultimate source of mature blood cells, which need continuous replenishment. One potential cause of HSC dysfunction is senescence, in which HSCs and progenitor cells enter a state of proliferative arrest. HSC senescence is genetically regulated and one particular regulator is the telomerase gene. Mutations in the telomerase gene complex have been found in patients with bone marrow failure syndromes. During a normal lifetime, HSC clones function over the long term and may not show any functional loss under normal circumstances. However, pathologic environments may limit HSC proliferation, accelerate HSC turnover, and shorten the functional life of HSCs, leading to HSC clonal exhaustion and senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen J, Astle CM, Harrison DE. Development and aging of primitive hematopoietic stem cells in BALB/cBy mice. Exp Hematol. 1999;27:928–935.

    PubMed  CAS  Google Scholar 

  2. Chen J, Astle CM, Muller-Sieburg CE, Harrison DE. Primitive hemopoietic stem cell function in vivo is uniquely high in the CXB- 12 mouse strain. Blood. 2000;96:4124–4131.

    PubMed  CAS  Google Scholar 

  3. Harrison DE,Astle CM, Stone M. Numbers and functions of transplantable primitive immunohematopoietic stem cells: effects of age. J Immunol. 1989;142:3833–3840.

    PubMed  Google Scholar 

  4. Harrison DE, Jordan CT, Zhong RK, Astle CM. Primitive hemopoietic stem cells: direct assay of most productive populations by competitive repopulation with simple binomial, correlation and covariance calculations. Exp Hematol. 1993;21:206–219.

    PubMed  CAS  Google Scholar 

  5. Muller-Sieburg CE, Riblet R. Genetic control of the frequency of hematopoietic stem cells in mice: mapping of a candidate locus to chromosome 1. J Exp Med. 1996;183:1141–1150.

    PubMed  CAS  Google Scholar 

  6. Osawa M, Hanada K, Hamada H, Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science. 1996;273:242–245.

    PubMed  CAS  Google Scholar 

  7. Spangrude GJ, Heimfeld S,Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science. 1988;241: 58–62.

    PubMed  CAS  Google Scholar 

  8. Zhao Y, Zhan Y, Lin Y,Yang J, Harrison DE, Anderson WF. Regulation of murine hematopoietic stem cell proliferation in vivo. Blood. 2000;96:3016–3022.

    PubMed  CAS  Google Scholar 

  9. Abkowitz JL, Golinelli D, Harrison DE, Guttorp P. In vivo kinetics of murine hemopoietic stem cells. Blood. 2000;96:3399–3405.

    PubMed  CAS  Google Scholar 

  10. Abkowitz JL, Catlin SN, McCallie MT, Guttorp P. Evidence that the number of hematopoietic stem cells per animal is conserved in mammals. Blood. 2002;100:2665–2667.

    PubMed  CAS  Google Scholar 

  11. Young NS, Barrett AJ. Immune mediation of pancytopenia in myelodysplastic syndromes: pathophysiology and treatment. In: Bennett JM, ed. The Myelodysplastic Syndromes: Pathobiology and Clinical Management. New York, NY: Marcel Dekker; 2002: 373–398.

    Google Scholar 

  12. Young NS. Acquired aplastic anemia. Ann Intern Med. 2002;136: 534–546.

    PubMed  Google Scholar 

  13. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.

    PubMed  CAS  Google Scholar 

  14. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614–636.

    PubMed  CAS  Google Scholar 

  15. Hayflick L.The future of ageing. Nature. 2000;408:267–269.

    PubMed  CAS  Google Scholar 

  16. Hayflick L. The illusion of cell immortality. Br J Cancer. 2000;83: 841–846.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120:513–522.

    PubMed  CAS  Google Scholar 

  18. Harrison DE, Doubleday JW. Normal function of immunologic stem cells from aged mice. J Immunol. 1975;114:1314–1317.

    PubMed  CAS  Google Scholar 

  19. Harrison DE. Normal function of transplanted marrow cell lines from aged mice. J Gerontol. 1975;30:279–285.

    PubMed  CAS  Google Scholar 

  20. Harrison DE, Astle CM, Doubleday JW. Cell lines from old immunodeficient donors give normal responses in young recipients. J Immunol. 1977;118:1223–1227.

    PubMed  CAS  Google Scholar 

  21. Harrison DE, Astle CM, Delaittre JA. Loss of proliferative capacity in immunohemopoietic stem cells caused by serial transplantation rather than aging. J Exp Med. 1978;147:1526–1531.

    PubMed  CAS  Google Scholar 

  22. Harrison DE. Mouse erythropoietic stem cell lines function normally 100 months: loss related to number of transplantations. Mech Ageing Dev. 1979;9:427–433.

    PubMed  CAS  Google Scholar 

  23. Harrison DE. Lifespans of immunohemopoietic stem cell lines. Adv Pathobiol. 1980;7:187–199.

    PubMed  CAS  Google Scholar 

  24. Harrison DE. Long-term erythropoietic repopulating ability of old, young, and fetal stem cells. J Exp Med. 1983;157:1496–1504.

    PubMed  CAS  Google Scholar 

  25. Smith AL, Ellison FL, McCoy JP, Chen J. c-Kit expression and stem cell factor-induced hematopoietic cell proliferation are up-regulated in aged B6D2F1 mice. J Gerontol A Biol Sci Med Sci. 2005;60: 448–456.

    Google Scholar 

  26. Van Zant G, Holland BP, Eldridge PW, Chen JJ. Genotyperestricted growth and aging patterns in hematopoietic stem cell populations of allophenic mice. J Exp Med. 1990;171:1547–1565.

    PubMed  CAS  Google Scholar 

  27. Van Zant G, Chen JJ, Scott-Micus K. Developmental potential of hematopoietic stem cells determined using retrovirally marked allophenic marrow. Blood. 1991;77:756–763.

    PubMed  CAS  Google Scholar 

  28. Van Zant G, Thompson BP, Chen JJ. Differentiation of chimeric bone marrow in vivo reveals genotype-restricted contributions to hematopoiesis. Exp Hematol. 1991;19:941–949.

    PubMed  CAS  Google Scholar 

  29. Van Zant G, Scott-Micus K, Thompson BP, Fleischman RA, Perkins S. Stem cell quiescence/activation is reversible by serial transplantation and is independent of stromal cell genotype in mouse aggregation chimeras. Exp Hematol. 1992;20:470–475.

    PubMed  CAS  Google Scholar 

  30. Verfaillie CM, Almeida-Porada G,Wissink S, Zanjani ED. Kinetics of engraftment of CD34– and CD34+ cells from mobilized blood differs from that of CD34– and CD34+ cells from bone marrow. Exp Hematol. 2000;28:1071–1079.

    PubMed  CAS  Google Scholar 

  31. Kamminga LM, van Os R, Ausema A, et al. Impaired hematopoietic stem cell functioning after serial transplantation and during normal aging. Stem Cells. 2005;23:82–92.

    PubMed  CAS  Google Scholar 

  32. Meng A, Wang Y, Van Zant G, Zhou D. Ionizing radiation and busulfan induce premature senescence in murine bone marrow hematopoietic cells. Cancer Res. 2003;63:5414–5419.

    PubMed  CAS  Google Scholar 

  33. Chen J,Astle CM, Harrison DE. Hematopoietic senescence is postponed and hematopoietic stem cell function is enhanced by dietary restriction. Exp Hematol. 2003;31:1097–1103.

    PubMed  Google Scholar 

  34. de Haan G, Szilvassy SJ, Meyerrose TE, Dontje B, Grimes B, Van Zant G. Distinct functional properties of highly purified hematopoietic stem cells from mouse strains differing in stem cell numbers. Blood. 2000;96:1374–1379.

    PubMed  CAS  Google Scholar 

  35. Geiger H, Rennebeck G,Van Zant G. Regulation of hematopoietic stem cell aging in vivo by a distinct genetic element. Proc Natl Acad Sci U S A. 2005;102:5102–5107.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Chen J, Astle CM, Harrison DE. Genetic regulation of primitive hematopoietic stem cell senescence. Exp Hematol. 2000;28: 442–450.

    PubMed  CAS  Google Scholar 

  37. Abkowitz JL, Taboada MR, Sabo KM, Shelton GH. The ex vivo expansion of feline marrow cells leads to increased numbers of BFU-E and CFU-GM but a loss of reconstituting ability. Stem Cells. 1998;16:288–293.

    PubMed  CAS  Google Scholar 

  38. Morrison SJ,Wandycz AM, Akashi K, Globerson A,Weissman IL. The aging of hematopoietic stem cells. Nat Med. 1996;2:1011–1016. [See comments.]

    Google Scholar 

  39. Sudo K, Ema H, Morita Y, Nakauchi H. Age-associated characteristics of murine hematopoietic stem cells. J Exp Med. 2000;192: 1273–1280.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Morrison SJ, Prowse KR, Ho P,Weissman IL. Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity. 1996;5:207–216.

    PubMed  CAS  Google Scholar 

  41. Manning EL, Crossland J, Dewey MJ, Van Zant G. Influences of inbreeding and genetics on telomere length in mice. Mamm Genome. 2002;13:234–238.

    PubMed  CAS  Google Scholar 

  42. Brummendorf TH, Mak J, Sabo KM, Baerlocher GM,Abkowitz JL, Lansdorp PM. Longitudinal studies of telomere length in feline blood cells: implications for hematopoietic stem cell turnover in vivo. Exp Hematol. 2002;30:1147–1152.

    PubMed  Google Scholar 

  43. Allsopp RC, Cheshier S,Weissman IL.Telomere shortening accompanies increased cell cycle activity during serial transplantation of hematopoietic stem cells. J Exp Med. 2001;193:917–924.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Allsopp RC, Cheshier S,Weissman IL. Telomerase activation and rejuvenation of telomere length in stimulated T cells derived from serially transplanted hematopoietic stem cells. J Exp Med. 2002; 196:1427–1433.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Hemann MT, Strong MA, Hao LY, Greider CW. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell. 2001;107:67–77.

    PubMed  CAS  Google Scholar 

  46. Samper E, Fernandez P, Eguia R, Martin-Rivera L, Bernad A. Long-term repopulating ability of telomerase-deficient murine hematopoietic stem cells. Blood. 2002;99:2767–2775.

    PubMed  CAS  Google Scholar 

  47. Allsopp RC, Morin GB, DePinho R, Harley CB, Weissman IL. Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood. 2003;102:517–520.

    PubMed  CAS  Google Scholar 

  48. Baerlocher GM, Roth A, Lansdorp PM. Telomeres in hematopoietic stem cells. Ann N Y Acad Sci. 2003;996:44–48.

    PubMed  CAS  Google Scholar 

  49. Van Ziffle JA, Baerlocher GM, Lansdorp PM. Telomere length in subpopulations of human hematopoietic cells. Stem Cells. 2003;21: 654–660.

    PubMed  CAS  Google Scholar 

  50. Awaya N, Baerlocher GM, Manley TJ, et al.Telomere shortening in hematopoietic stem cell transplantation: a potential mechanism for late graft failure. Biol Blood Marrow Transplant. 2002;8:597–600.

    PubMed  Google Scholar 

  51. Rufer N, Brummendorf TH, Kolveraa S, et al. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med. 1999;190:157–167.

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Martens UM, Chavez EA, Poon SS, Schmoor C, Lansdorp PM. Accumulation of short telomeres in human fibroblasts prior to replicative senescence. Exp Cell Res. 2000;256:291–299.

    PubMed  CAS  Google Scholar 

  53. Brummendorf TH, Rufer N, Holyoake TL, et al. Telomere length dynamics in normal individuals and in patients with hematopoietic stem cell-associated disorders. Ann N Y Acad Sci. 2001;938: 293–303.

    PubMed  CAS  Google Scholar 

  54. Brummendorf TH, Maciejewski JP, Mak J,Young NS, Lansdorp PM. Telomere length in leukocyte subpopulations of patients with aplastic anemia. Blood. 2001;97:895–900.

    PubMed  CAS  Google Scholar 

  55. Fogarty PF, Yamaguchi H,Wiestner A, et al. Late presentation of dyskeratosis congenita as apparently acquired aplastic anaemia due to mutations in telomerase RNA. Lancet. 2003;362:1628–1630.

    CAS  Google Scholar 

  56. Knudson M,Kulkarni S, Ballas ZK, Bessler M, Goldman F. Association of immune abnormalities with telomere shortening in autosomal- dominant dyskeratosis congenita. Blood. 2005;105:682–688.

    PubMed  Google Scholar 

  57. Yamaguchi H, Baerlocher GM, Lansdorp PM, et al. Mutations of the human telomerase RNA gene (TERC) in aplastic anemia and myelodysplastic syndrome. Blood. 2003;102:916–918.

    CAS  PubMed  Google Scholar 

  58. Ly H, Calado RT, Allard P, et al. Functional characterization of telomerase RNA variants found in patients with hematologic disorders. Blood. 2005;105:2332–2339.

    PubMed  CAS  Google Scholar 

  59. Yamaguchi H, Calado RT,Ly H, et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med. 2005;352:1413–1424.

    CAS  Google Scholar 

  60. Lemischka IR, Raulet DH, Mulligan RC. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell. 1986;45: 917–927.

    PubMed  CAS  Google Scholar 

  61. Drize N, Keller JR, Chertkov J. Local clonal analysis of the hematopoietic system shows that multiple small short-living clones maintain life-long hematopoiesis in reconstituted mice. Blood. 1996;88:2927–2938.

    PubMed  CAS  Google Scholar 

  62. Drize N, Chertkov J, Sadovnikova E, Tiessen S, Zander A. Longterm maintenance of hematopoiesis in irradiated mice by retrovirally transduced peripheral blood stem cells. Blood. 1997;89: 1811–1817.

    PubMed  CAS  Google Scholar 

  63. Drize NJ, Olshanskaya YV, Gerasimova LP, et al. Lifelong hematopoiesis in both reconstituted and sublethally irradiated mice is provided by multiple sequentially recruited stem cells. Exp Hematol. 2001;29:786–794.

    PubMed  CAS  Google Scholar 

  64. Jordan CT, Lemischka IR. Clonal and systemic analysis of longterm hematopoiesis in the mouse. Genes Dev. 1990;4:220–232.

    PubMed  CAS  Google Scholar 

  65. Simonaro CM, Schuchman EH, Haskins ME, et al. Autologous transplantation of retrovirally transduced bone marrow or neonatal blood cells into cats can lead to long-term engraftment in the absence of myeloablation. Gene Ther. 1999;6:107–113.

    PubMed  CAS  Google Scholar 

  66. Schmidt M, Zickler P, Hoffmann G, et al. Polyclonal long-term repopulating stem cell clones in a primate model. Blood. 2002;100: 2737–2743.

    PubMed  CAS  Google Scholar 

  67. Kelly PF, Donahue RE, Vandergriff JA, et al. Prolonged multilineage clonal hematopoiesis in a rhesus recipient of CD34 positive cells marked with a RD114 pseudotyped oncoretroviral vector. Blood Cells Mol Dis. 2003;30:132–143.

    PubMed  CAS  Google Scholar 

  68. Kuramoto K, Follmann DA, Hematti P, et al. Effect of chronic cytokine therapy on clonal dynamics in non-human primates. Blood. 2004;103:4070–4077.

    PubMed  CAS  Google Scholar 

  69. Josten KM, Tooze JA, Borthwick-Clarke C, Gordon-Smith EC, Rutherford TR. Acquired aplastic anemia and paroxysmal nocturnal hemoglobinuria: studies on clonality. Blood. 1991;78:3162–3167.

    PubMed  CAS  Google Scholar 

  70. Maciejewski JP, Sloand EM, Sato T, Anderson S, Young NS. Impaired hematopoiesis in paroxysmal nocturnal hemoglobinuria/ aplastic anemia is not associated with a selective proliferative defect in the glycosylphosphatidylinositol-anchored protein-deficient clone. Blood. 1997;89:1173–1181.

    PubMed  CAS  Google Scholar 

  71. Chen G, Kirby M, Zeng W, Young NS, Maciejewski JP. Superior growth of glycophosphatidy linositol-anchored protein-deficient progenitor cells in vitro is due to the higher apoptotic rate of progenitors with normal phenotype in vivo. Exp Hematol. 2002;30: 774–782.

    PubMed  CAS  Google Scholar 

  72. Chen G, Zeng W, Maciejewski JP, Kcyvanfar K, Billings EM, Young NS. Differential gene expression in hematopoietic progenitors from paroxysmal nocturnal hemoglobinuria patients reveals an apoptosis/immune response in ‘normal’ phenotype cells. Leukemia. 2005;19:862–868.

    PubMed  CAS  Google Scholar 

  73. Rothstein G. Disordered hematopoiesis and myelodysplasia in the elderly. J Am Geriatr Soc. 2003;51:S22-S26.

    Google Scholar 

  74. Chen G, Zeng W, Miyazato A, et al. Distinctive gene expression profiles of CD34 cells from patients with myelodysplastic syndrome characterized by specific chromosomal abnormalities. Blood. 2004;104:4210–4218.

    PubMed  CAS  Google Scholar 

  75. Sloand EM, Mainwaring L, Fuhrer M, et al. Preferential suppression of trisomy 8 compared with normal hematopoietic cell growth by autologous lymphocytes in patients with trisomy 8 myelodysplastic syndrome. Blood. 2005;106:841–851.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Chen, J. Senescence of Hematopoietic Stem Cells and Bone Marrow Failure. Int J Hematol 82, 190–195 (2005). https://doi.org/10.1532/IJH97.05094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.05094

Key words

Navigation