Skip to main content
Log in

The Niche for Spermatogonial Stem Cells in the Mammalian Testis

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The theory of the “stem cell niche” was originally proposed for the hematopoietic system, and the existence of the niche as an actual entity was proved in the Drosophila germ cell system. Historically, mammalian spermatogenesis has been studied extensively as a prime example of a stem cell system, and studies have established a stem-progenitor hierarchical order of spermatogonia. In the niche on the basal lamina of seminiferous tubules, spermatogonial stem cells (SSCs) are secluded from the outside world and divide constantly to self-renew and differentiate. During the last 10 years, the development and exploitation of the germ cell transplantation method has expanded our understanding of the nature of SSCs and their niches. The ability to maintain and expand SSCs in vitro, which recently became possible, has further reinforced this research area as a mecca of stem cell biology. Nonetheless, the mammalian germ stem cell and its niche remain to be defined more strictly and precisely. We are still on a journey in search of the real stem cell and its true niche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by pheno-type. Immunity. 1994;1:661–673.

    Article  CAS  PubMed  Google Scholar 

  2. Lagasse E, Shizuru JA, Uchida N, Tsukamoto A, Weissman IL. Toward regenerative medicine. Immunity. 2001;14:425–436.

    Article  CAS  PubMed  Google Scholar 

  3. Tegelenbosch RA, De Rooij DG. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res. 1993;290:193–200.

    Article  CAS  PubMed  Google Scholar 

  4. Nagano MC. Homing efficiency and proliferation kinetics of male germ line stem cells following transplantation in mice. Biol Reprod. 2003;69:701–707.

    Article  CAS  PubMed  Google Scholar 

  5. Osawa M, Hanada K, Hamada H, Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science. 1996;273:242–245.

    Article  CAS  PubMed  Google Scholar 

  6. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4:7–25.

    CAS  PubMed  Google Scholar 

  7. Xie T, Spradling AC. A niche maintaining germ line stem cells in the Drosophila ovary. Science. 2000;290:328–330.

    Article  CAS  PubMed  Google Scholar 

  8. Tran J, Brenner TJ, DiNardo S. Somatic control over the germline stem cell lineage during Drosophila spermatogenesis. Nature. 2000;407:754–757.

    Article  CAS  PubMed  Google Scholar 

  9. Kiger AA, White-Cooper H, Fuller MT. Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature. 2000;407:750–754.

    Article  CAS  PubMed  Google Scholar 

  10. Lin H. The stem-cell niche theory: lessons from flies. Nat Rev Genet. 2002;3:931–940.

    Article  CAS  PubMed  Google Scholar 

  11. Gilboa L, Lehmann R. How different is Venus from Mars? The genetics of germ-line stem cells in Drosophila females and males. Development. 2004;131:4895–4905.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425:836–841.

    Article  CAS  PubMed  Google Scholar 

  13. Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425:841–846.

    Article  CAS  PubMed  Google Scholar 

  14. Shen Q, Goderie SK, Jin L, et al. Endothelial cells stimulate self- renewal and expand neurogenesis of neural stem cells. Science. 2004;304:1338–1340.

    Article  CAS  PubMed  Google Scholar 

  15. Arai F, Hirao A, Ohmura M, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118:149–161.

    Article  CAS  PubMed  Google Scholar 

  16. Huckins C. The spermatogonial stem cell population in adult rats, I: their morphology, proliferation and maturation. Anat Rec. 1971;169:533–558.

    Article  CAS  PubMed  Google Scholar 

  17. Oakberg EF. Spermatogonial stem-cell renewal in the mouse. Anat Rec. 1971;169:515–532.

    Article  CAS  PubMed  Google Scholar 

  18. Brinster RL, Zimmermann JW. Spermatogenesis following male germcell transplantation. Proc Natl Acad Sci USA. 1994;91:11298–11302.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci USA. 1994;91:11302–11307.

    Google Scholar 

  20. Kanatsu-Shinohara M, Ogonuki N, Inoue K, et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod. 2003;69:612–616.

    Article  CAS  PubMed  Google Scholar 

  21. McLaren A. Germ and somatic cell lineages in the developing gonad. Mol Cell Endocrinol. 2000;163:3–9.

    Article  CAS  PubMed  Google Scholar 

  22. McCarrey JR. Development of the germ cell. In: Desjardins C, Ewing LL, eds. Cell and Molecular Biology of the Testis. Oxford, UK: Oxford University Press; 1993:58–89.

    Google Scholar 

  23. De Rooij DG, Russell LD. All you wanted to know about spermatogonia but were afraid to ask. J Androl. 2000;21:776–798.

    PubMed  Google Scholar 

  24. Brawley C, Matunis E. Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science. 2004;304:1331–1334.

    Article  CAS  PubMed  Google Scholar 

  25. Loeffler M, Potten CS. Stem cells and cellular pedigrees: a conceptual introduction. In: Potten CS, ed. Stem Cells. London, UK: Academic Press; 1997:1–27.

    Google Scholar 

  26. Huckins C. The morphology and kinetics of spermatogonial degeneration in normal adult rats: an analysis using a simplified classification of the germinal epithelium. Anat Rec. 1978;190:905–926.

    Article  CAS  PubMed  Google Scholar 

  27. Furuchi T, Masuko K, Nishimune Y, Obinata M, Matsui Y. Inhibition of testicular germ cell apoptosis and differentiation in mice misex- pressing Bcl2 in spermatogonia. Development. 1996;122:1703–1709.

    CAS  PubMed  Google Scholar 

  28. Rodriguiz I, Ody C, Araki K, Garcia I, Vassalli P. An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J. 1997;16:2262–2270.

    Article  Google Scholar 

  29. Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science. 1995;270:96–99.

    Article  CAS  PubMed  Google Scholar 

  30. Russell LD. Morphological and functional evidence for Sertoli- germ cell relationships. In: Russell LD, Griswold MD, eds. The Sertoli Cell. Clearwater, Fla: Cache River Press; 1993:365–390.

    Google Scholar 

  31. Chiarini-Garcia H, Hornick JR, Griswold MD, Russell LD. Distribution of type A spermatogonia in the mouse is not random. Biol Reprod. 2001;65:1179–1185.

    Article  CAS  PubMed  Google Scholar 

  32. Chiarini-Garcia H, Raymer AM, Russell LD. Non-random distribution of spermatogonia in rats: evidence of niches in the seminiferous tubules. Reproduction. 2003;126:669–680.

    Article  CAS  PubMed  Google Scholar 

  33. Brinster RL. Germline stem cell transplantation and transgenesis. Science. 2002;296:2174–2176.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ogawa T. Spermatogonial transplantation: the principle and possible applications. J Mol Med. 2001;79:368–374.

    Article  CAS  PubMed  Google Scholar 

  35. Creemers LB, Meng X, den Ouden K, et al. Transplantation of germ cells from glial cell line-derived neurotrophic factor-overex- pressing mice to host testes depleted of endogenous spermatogenesis by fractionated irradiation. Biol Reprod. 2002;66:1579–1584.

    Article  CAS  PubMed  Google Scholar 

  36. Ogawa T, Aréchaga JM, Avarbock MR, Brinster RL. Transplantation of testis germinal cells into mouse seminiferous tubules. Int J Dev Biol. 1997;41:111–122.

    CAS  PubMed  Google Scholar 

  37. Nagano M, Avarbock MR, Brinster RL. Pattern and kinetics of donor mouse spermatogonial stem cell colonization in recipient testes. Biol Reprod. 1999;60:1429–1436.

    Article  CAS  PubMed  Google Scholar 

  38. Ross MH. Sertoli-Sertoli junctions and Sertoli-spermatid junctions after efferent ductule ligation and lanthanum treatment. Am J Anat. 1977;148:49–55.

    Article  CAS  PubMed  Google Scholar 

  39. Ogawa T, Ohmura M, Yumura Y, Sawada H, Kubota Y. Expansion of murine spermatogonial stem cells through serial transplantation. Biol Reprod. 2003;68:316–322.

    Article  CAS  PubMed  Google Scholar 

  40. Dobrinski I, Ogawa T, Avarbock MR, Brinster RL. Computer assisted image analysis to assess colonization of recipient seminiferous tubules by spermatogonial stem cells from transgenic donor mice. Mol Reprod Dev. 1999;53:142–148.

    Article  CAS  PubMed  Google Scholar 

  41. Russell LD, Brinster RL. Spermatogonial transplantation. In: Zirkin BR, ed. Germ Cell Development, Division, Disruption and Death. New York, NY: Springer-Verlag; 1998:19–27.

    Chapter  Google Scholar 

  42. Matsuzaki Y, Kinjo K, Mulligan RC, Okano H. Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity. 2004;20:87–93.

    Article  CAS  PubMed  Google Scholar 

  43. Ogawa T, Dobrinski I, Brinster RL. Recipient preparation is critical for spermatogonial transplantation in the rat. Tissue Cell. 1999;31:461–472.

    Article  CAS  PubMed  Google Scholar 

  44. Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Remodeling of the postnatal mouse testis is accompanied by dramatic changes in stem cell number and niche accessibility. Proc Natl Acad Sci USA. 2000;98:6186–6191.

    Article  Google Scholar 

  45. Ryu B-Y, Orwig KE, Avarbock MR, Brinster RL. Stem cell and niche development in the postnatal rat testis. Dev Biol. 2003;263:253–263.

    Article  CAS  PubMed  Google Scholar 

  46. Shinohara T, Avarbock MR, Brinster RL. β1 and α6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci USA. 1999;96:5504–5509.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc Natl Acad Sci USA. 2000;97:8346–8351.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Kubota H, Avarbock MR, Brinster RL. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci USA. 2003;100:6487–6492.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183:1797–1806.

    Article  CAS  PubMed  Google Scholar 

  50. Goodell MA, Rosenzweig M, Kim H, et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med. 1997;3:1337–1345.

    Article  CAS  PubMed  Google Scholar 

  51. Gussoni E, Soneoka Y, Strickland CD, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature. 1999;401:390–394.

    CAS  PubMed  Google Scholar 

  52. Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA. Sca-1pos cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol. 2002;245:42–56.

    Article  CAS  PubMed  Google Scholar 

  53. Murayama A, Matsuzaki Y, Kawaguchi A, Shimazaki T, Okano H. Flow cytometric analysis of neural stem cells in the developing and adult mouse brain. Neurosci Res. 2002;69:837–847.

    Article  CAS  Google Scholar 

  54. Shimano K, Satake M, Okaya A, et al. Hepatic oval cells have the side population phenotype defined by expression of ATP-binding cassette transporter ABCG2/BCRP1. Am J Pathol. 2003;163:3–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Lassalle B, Bastos H, Louis JP, et al. ‘Side Population’ cells in adult mouse testis express Bcrp1 gene and are enriched in spermatogonia and germinal stem cells. Development. 2004;131:479–487.

    Article  CAS  PubMed  Google Scholar 

  56. Falciatori I, Borsellino G, Haliassos N, et al. Identification and enrichment of spermatogonial stem cells displaying side-population phenotype in immature mouse testis. FASEB J. 2004;18:376–378.

    Article  CAS  PubMed  Google Scholar 

  57. Siminovitch L, Till JE, McCulloch EA. Decline in colony forming ability of marrow cells subjected to serial transplantation into irradiated mice. J Cell Physiol. 1964;64:23–31.

    Article  CAS  Google Scholar 

  58. Iscove NN, Nawa K. Hematopoietic stem cells expand during serial transplantation in vivo without apparent exhaustion. Curr Biol. 1997;7:805–808.

    Article  CAS  PubMed  Google Scholar 

  59. Kanatsu-Shinohara M, Toyokuni S, Morimoto T, et al. Functional assessment of self-renewal activity of male germline stem cells following cytotoxic damage and serial transplantation. Biol Reprod. 2003;68:1801–1807.

    Article  CAS  PubMed  Google Scholar 

  60. Kierszenbaum AL. Mammalian spermatogenesis in vivo and in vitro: a partnership of spermatogenic and somatic cell lineages. Endocr Rev. 1994;15:116–134.

    CAS  PubMed  Google Scholar 

  61. Staub C. A century of research on mammalian male germ cell meiotic differentiation in vitro. J Androl. 2001;22:911–926.

    Article  CAS  PubMed  Google Scholar 

  62. Meng X, Lindahl M, Hyvonen ME, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science. 2000;287:1489–1493.

    Article  CAS  PubMed  Google Scholar 

  63. Yomogida K, Yagura Y, Tadokoro Y, Nishimune Y. Dramatic expansion of germinal stem cells by ectopically expressed human glial cell line-derived neurotrophic factor in mouse Sertoli cells. Biol Reprod. 2003;69:1303–1307.

    Article  CAS  PubMed  Google Scholar 

  64. Tadokoro Y, Yomogida K, Ohta H, Tohda A, Nishimune Y. Home- ostatic regulation of germinal stem cell proliferation by the GDNF/ FSH pathway. Mech Dev. 2002;113:29–39.

    Article  CAS  PubMed  Google Scholar 

  65. Matzuk MM. Germ-line immortality. Proc NatlAcad Sci USA. 2004;101:16395–16396.

    Article  CAS  Google Scholar 

  66. Nagano M, Ryu BY, Brinster CJ, Avarbock MR, Brinster RL. Maintenance of mouse male germ line stem cells in vitro. Biol Reprod. 2003;68:2207–2214.

    Article  CAS  PubMed  Google Scholar 

  67. Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc NatlAcad Sci USA. 2004;101:16489–16494.

    Article  CAS  Google Scholar 

  68. Ogawa T, Ohmura M, Tamura Y, et al. Derivation and morphological characterization of mouse spermatogonial stem cell lines. Arch Histol Cytol. 2004;67:297–306.

    Article  PubMed  Google Scholar 

  69. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell. 2004;116:769–778.

    Article  CAS  PubMed  Google Scholar 

  70. Ohmura M, Ogawa T, Ono M, et al. Increment of murine spermatogonial cell number by gonadotropin-releasing hormone analogue is independent of stem cell factor c-kit signal. Biol Reprod. 2003;68:2304–2313.

    Article  CAS  PubMed  Google Scholar 

  71. Kanatsu-Shinohara M, Miki H, Inoue K, et al. Long-term culture of mouse male germline stem cells under serum- or feeder-free conditions. Biol Reprod. 2005;72:985–991.

    Article  CAS  PubMed  Google Scholar 

  72. Clermont Y. Introduction to the Sertoli cell. In: Russell LD, Griswold MD, eds. The Sertoli Cell. Clearwater, Fla: Cache River Press; 1993:xxi-xxv.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiko Ogawa.

About this article

Cite this article

Ogawa, T., Ohmura, M. & Ohbo, K. The Niche for Spermatogonial Stem Cells in the Mammalian Testis. Int J Hematol 82, 381–388 (2005). https://doi.org/10.1532/IJH97.05088

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.05088

Key words

Navigation