Runx1/AML1 in Normal and Abnormal Hematopoiesis

Abstract

Runx1/AML1 (also known as CBFA2 and PEBP2αB) is a Runt family transcription factor critical for normal hematopoiesis. Runx1 forms a heterodimer with CBFβ and binds to the consensus PEBP2 sequence through the Runt domain. Runx1 enhances gene transcription by interacting with transcriptional coactivators such as p300 and CREB-binding protein. However, Runx1 can also suppress gene transcription by interacting with transcriptional corepressors, including mSin3A, TLE (mammalian homolog of Groucho), and histone deacetylases. Runx1 not only is critical for definitive hematopoiesis in the fetus but also is required for normal megakaryocytic maturation and T-lymphocyte and B-lymphocyte development in adult mice. Runx1 has been identified in leukemia-associated chromosomal translocations, including t(8;21) (Runx1-ETO/MTG8), t(16;21) (Runx1-MTG16), t(3;21) (Runx1 -Evi1), t(12;21) (TEL-Runx1), and t(X;21) (Runx1-Fog2).The molecular mechanism of leukemogenesis by these fusion proteins is discussed. Various mutant mice expressing these fusion proteins have been created. However, expression of the fusion protein is not sufficient by itself to cause leukemia and likely requires additional events for leukemogenesis. Point mutations in a Runx1 allele cause haploinsufficiency and a biallelic null for Runx1, which are associated with familial platelet disorder with a propensity for acute myeloid leukemia (FPD/AML) and AML-M0, respectively. Thus, the correct protein structure and the precise dosage of Runx1 are essential for the maintenance of normal hematopoiesis.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    van WijnenAJ, Stein GS, Gergen JP, et al. Nomenclature for Runt- related (RUNX) proteins.Oncogene. 2004;23:4209–4210.

    Article  CAS  Google Scholar 

  2. 2.

    Yan J, Liu Y, Lukasik SM, Speck NA, Bushweller JH. CBFβ allosterically regulates the Runx1 Runt domain via a dynamic con- formational equilibrium.Nat Struct Mol Biol. 2004;11:901–906.

    Article  CAS  Google Scholar 

  3. 3.

    Huang G, Shigesada K, Ito K, Wee HJ, Yokomizo T, Ito Y. Dimer- ization with PEBP2β protects RUNX1/AML1 from ubiquitin-pro- teasome-mediated degradation.EMBO J. 2001;20:723–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Lutterbach B, Hiebert SW. Role of the transcription factor AML-1 in acute leukemia and hematopoietic differentiation.Gene. 2000; 245:223–235.

    Article  CAS  Google Scholar 

  5. 5.

    Mitani K. Leukemogenesis by the chromosomal translocations.Leukemia. 1997;11(suppl 3):294–296.

    PubMed  Google Scholar 

  6. 6.

    Perry C, Eldor A, Soreq H. Runx1/AML1 in leukemia: disrupted association with diverse protein partners.Leuk Res. 2002;26:221–2288.

    Article  CAS  Google Scholar 

  7. 7.

    Kitabayashi I, Yokoyama A, Shimizu K, Ohki M. Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation.EMBO J. 1998;17:2994–30044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Yagi R, Chen LF, Shigesada K, Murakami Y, Ito Y. A WW domain- containing yes-associated protein (YAP) is a novel transcriptional co-activator.EMBO J. 1999;18:2551–2562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Bruhn L, Munnerlyn A, Grosschedl R. ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRalpha enhancer function.Genes Dev. 1997;11:640–653.

    Article  CAS  Google Scholar 

  10. 10.

    Durst KL, Hiebert SW. Role of RUNX family members in transcriptional repression and gene silencing.Oncogene. 2004;23:4220–42244.

    Article  CAS  Google Scholar 

  11. 11.

    Taniuchi I, Osato M, Egawa T, et at. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development.Cell. 2002;111:621–633.

    Article  CAS  Google Scholar 

  12. 12.

    Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis.Cell. 1996;84:321–330.

    Article  CAS  Google Scholar 

  13. 13.

    Wang Q, Stacy T, Miller JD, et al. The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo.Cell. 1996;87:697–708.

    Article  CAS  Google Scholar 

  14. 14.

    Cai Z, de BruijnM, Ma X, et al. Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo.Immunity. 2000;13:423–431.

    Article  CAS  Google Scholar 

  15. 15.

    North TE, de Bruijn MF, Stacy T, et al. Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgesta- tion mouse embryo.Immunity. 2002;16:661–672.

    Article  CAS  Google Scholar 

  16. 16.

    Ichikawa M, Asai T, Saito T, et al. AML-1 is required for megakary- ocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis [erratum in:Nat Med. 2005;11:102].Nat Med. 2004;10:299–304.

    Article  CAS  Google Scholar 

  17. 17.

    Hayashi K, Natsume W, Watanabe T, et al. Diminution of the AML1 transcription factor function causes differential effects on the fates of CD4 and CD8 single-positive T cells.J Immunol. 2000; 165:6816–6824.

    Article  CAS  Google Scholar 

  18. 18.

    Hayashi K, Abe N, Watanabe T, et al. Overexpression of AML1 transcription factor drives thymocytes into the CD8 single-positive lineage.J Immunol. 2001;167:4957–4965.

    Article  CAS  Google Scholar 

  19. 19.

    Komine O, Hayashi K, Natsume W, et al. The Runx1 transcription factor inhibits the differentiation of naive CD4+ T cells into the Th2 lineage by repressingGATA3 expression.J Exp Med. 2003; 198:51–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Miyoshi H, Kozu T, Shimizu K, et al. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript.EMBO J. 1993;12:2715–2721.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  21. 21.

    Lutterbach B, Westendorf JJ, Linggi B, et al. ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepres- sors.Mol Cell Biol. 1998;18:7176–7184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Amann JM, Nip J, Strom DK, et al. ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacety- lases and binds mSin3A through its oligomerization domain.Mol Cell Biol. 2001;21:6470–6483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Chevallier N, Corcoran CM, Lennon C, et al. ETO protein of t(8;21) AML is a corepressor for Bcl-6 B-cell lymphoma oncoprotein.Blood. 2004;103:1454–1463.

    Article  CAS  Google Scholar 

  24. 24.

    Davis JN, McGhee L, Meyers S. The ETO (MTG8) gene family. Gene. 2003;303:1–10.

    Article  CAS  Google Scholar 

  25. 25.

    Bushweller JH, Liu Y, Chruszcz M, Minor W, Speck NA. Structural and functional basis of the dominant negative phenotype of AML1- ETO, product of the t(8;21) [abstract].Blood. 2003;102:171a.

    Google Scholar 

  26. 26.

    Vangala RK, Heiss-Neumann MS, Rangatia JS, et al. The myeloid master regulator transcription factor PU.1 is inactivated by AML1- ETO in t(8;21) myeloid leukemia.Blood. 2003;101:270–277.

    Article  CAS  Google Scholar 

  27. 27.

    Shimizu K, Kitabayashi I, Kamada N, et al. AML1-MTG8 leukemic protein induces the expression of granulocyte colony-stimulating factor (G-CSF) receptor through the up-regulation of CCAAT/ enhancer binding protein epsilon.Blood. 2000;96:288–296.

    PubMed  CAS  Google Scholar 

  28. 28.

    Elsasser A, Franzen M, Kohlmann A, et al. The fusion protein AML1-ETO in acute myeloid leukemia with translocation t(8;21) induces c-jun protein expression via the proximal AP-1 site of the c-jun promoter in an indirect, JNK-dependent manner.Oncogene. 2003;22:5646–5657.

    Article  CAS  Google Scholar 

  29. 29.

    Mulloy JC, Jankovic V, Wunderlich M, et al. AML1-ETO fusion protein up-regulates TRKA mRNA expression in human CD34+ cells, allowing nerve growth factor-induced expansion.Proc Natl Acad Sci USA. 2005;102:4016–4021.

    Article  CAS  Google Scholar 

  30. 30.

    Zhang J, Kalkum M, Yamamura S, Chait BT, Roeder RG. E protein silencing by the leukemogenic AML1-ETO fusion protein.Science. 2004;305:1286–1289.

    Article  CAS  Google Scholar 

  31. 31.

    Kitabayashi I, Ida K, Morohoshi F, et al. The AML1-MTG8 leukemic fusion protein forms a complex with a novel member of the MTG8(ETO/CDR) family, MTGR1.Mol Cell Biol. 1998;18:846–8588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Kitabayashi I, Yokoyama A, Shimizu K, Ohki M. Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation.EMBO J. 1998;17:2994–30044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Ibanez V, Sharma A, Buonamici S, et al. AML1-ETO decreases ETO-2 (MTG16) interactions with nuclear receptor corepressor, an effect that impairs granulocyte differentiation.Cancer Res. 2004;64:4547–4554.

    Article  CAS  Google Scholar 

  34. 34.

    Okuda T, Cai Z, Yang S, et al. Expression of a knocked-inAML1- ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors.Blood. 1998;91:3134–3143.

    PubMed  CAS  Google Scholar 

  35. 35.

    Yergeau DA, Hetherington CJ, Wang Q, et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for anAML1-ETO fusion gene.Nat Genet. 1997;15:303–306.

    Article  CAS  Google Scholar 

  36. 36.

    Yuan Y, Zhou L, Miyamoto T, et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations.Proc Natl Acad Sci USA. 2001;98:10398–10403.

    Article  CAS  Google Scholar 

  37. 37.

    Rhoades KL, Hetherington CJ, Harakawa N, et al. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model.Blood. 2000;96:2108–2115.

    PubMed  CAS  Google Scholar 

  38. 38.

    Higuchi M, O’Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia.Cancer Cell. 2002;1:63–74.

    Article  CAS  Google Scholar 

  39. 39.

    Mulloy JC, Cammenga J, MacKenzie KL, Berguido FJ, Moore MA, Nimer SD. The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells.Blood. 2002;99:15–23.

    Article  CAS  Google Scholar 

  40. 40.

    de Guzman CG, Warren AJ, Zhang Z, et al. Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of theAML1-ETO translocation.Mol Cell Biol. 2002;22:5506–5517.

    Article  CAS  Google Scholar 

  41. 41.

    Fenske TS, Pengue G, Mathews V, et al. Stem cell expression of the AML1/ETO fusion protein induces a myeloproliferative disorder in mice.Proc Natl Acad Sci USA. 2004;101:15184–15189.

    Article  CAS  Google Scholar 

  42. 42.

    Yan M, Burel SA, Peterson LF, et al. Deletion of an AML1-ETO C-terminal NcoR/SMRT-interacting region strongly induces leukemia development.Proc Natl Acad Sci USA. 2004;101:17186–171911.

    Article  CAS  Google Scholar 

  43. 43.

    Mitani K, Ogawa S, Tanaka T, et al. Generation of the AML1- EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia.EMBO J. 1994;13:504–510.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  44. 44.

    Barjesteh van Waalwijk vanDoorn-Khosrovani S, Erpelinck C, van PuttenWL, et al. HighEVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients.Blood. 2003;101:837–845.

    Article  CAS  Google Scholar 

  45. 45.

    Buonamici S, Li D, Chi Y, et al. EVI1 induces myelodysplastic syndrome in mice.J Clin Invest. 2004;114:713–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Hirai H. The transcription factor Evi-1.Int J Biochem Cell Biol. 1999;31:1367–1371.

    Article  CAS  Google Scholar 

  47. 47.

    Fears S, Mathieu C, Zeleznik-Le N, Huang S, Rowley JD, Nucifora G. Intergenic splicing ofMDS1 andEVI1 occurs in normal tissues as well as in myeloid leukemia and produces a new member of the PR domain family.Proc Natl Acad Sci USA. 1996;93:1642–1647.

    Article  CAS  Google Scholar 

  48. 48.

    Tanaka T, Nishida J, Mitani K, Ogawa S, Yazaki Y, Hirai H. Evi-1 raises AP-1 activity and stimulates c-fos promoter transactivation with dependence on the second zinc finger domain.J Biol Chem. 1994;269:24020–24026.

    PubMed  CAS  Google Scholar 

  49. 49.

    Takahashi S, Licht JD. The human promyelocytic leukemia zinc finger gene is regulated by the Evi-1 oncoprotein and a novel guanine- rich site binding protein.Leukemia. 2002;16:1755–1762.

    Article  CAS  Google Scholar 

  50. 50.

    Yuasa H, Oike Y, Iwama A, et al. Oncogenic transcription factorEvi1 regulates hematopoietic stem cell proliferation throughGATA-2 expression.EMBO J. 2005;24:1976–1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Buonamici S, Li D, Mikhail FM, et al. EVI1 abrogates interferon-α response by selectively blocking PML induction.J Biol Chem. 2005;280:428–436.

    Article  CAS  Google Scholar 

  52. 52.

    Kurokawa M, Mitani K, Irie K, et al. The oncoprotein Evi-1 represses TGF-β signalling by inhibiting Smad3.Nature. 1998;394:92–96.

    Article  CAS  Google Scholar 

  53. 53.

    Izutsu K, Kurokawa M, Imai Y, Maki K, Mitani K, Hirai H. The corepressor CtBP interacts with Evi-1 to repress transforming growth factor β signaling.Blood. 2001;97:2815–2282.

    Article  CAS  Google Scholar 

  54. 54.

    Palmer S, Brouillet JP, Kilbey A, et al. Evi-1 transforming and repressor activities are mediated by CtBP co-repressor proteins.J. Biol Chem. 2001;276:25834–25840.

    Article  CAS  Google Scholar 

  55. 55.

    Tanaka K, Tanaka T, Kurokawa M, et al. The AML1/ETO(MTG8) and AML1/Evi-1 leukemia-associated chimeric oncoproteins accumulate PEBP2β(CBFβ) in the nucleus more efficiently than wild- type AML1.Blood. 1998;91:1688–1699.

    PubMed  CAS  Google Scholar 

  56. 56.

    Tanaka T, Mitani K, Kurokawa M, et al. Dual functions of the AML1/Evi-1 chimeric protein in the mechanism of leukemogene- sis in t(3;21) leukemias.Mol Cell Biol. 1995;15:2383–2392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Izutsu K, Kurokawa M, Imai Y, et al. The t(3;21) fusion product, AML1/Evi-1 blocks AML1-induced transactivation by recruiting CtBP.Oncogene. 2002;21:2695–2703.

    Article  CAS  Google Scholar 

  58. 58.

    Senyuk V, Chakraborty S, Mikhail FM, Zhao R, Chi Y, Nucifora G. The leukemia-associated transcription repressor AML1/MDS1/ EVI1 requires CtBP to induce abnormal growth and differentiation of murine hematopoietic cells.Oncogene. 2002;21:3232–3240.

    Article  CAS  Google Scholar 

  59. 59.

    Cuenco GM, Nucifora G, Ren R. Human AML1/MDS1/EVI1 fusion protein induces an acute myelogenous leukemia (AML) in mice: a model for human AML.Proc Natl Acad Sci USA. 2000;97:1760–17655.

    Article  CAS  Google Scholar 

  60. 60.

    Maki K, Yamagata T, Asai T, et al. Dysplastic definitive hematopoiesis in AML1/Evi-1 knock-in embryos.Blood. 2005. In press.

  61. 61.

    Gamou T, Kitamura E, Hosoda F, et al. The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG8(ETO) family.Blood. 1998;91:4028–4037.

    PubMed  PubMed Central  CAS  Google Scholar 

  62. 62.

    Morohoshi F, Mitani S, Mitsuhashi N, et al. Structure and expression pattern of a humanMTG8/ETO family gene,MTGR1.Gene. 2000;241:287–295.

    Article  CAS  Google Scholar 

  63. 63.

    Kochetkova M, McKenzie OL, Bais AJ, et al.CBFA2T3 (MTG16) is a putative breast tumor suppressor gene from the breast cancer loss of heterozygosity region at 16q24.3.Cancer Res. 2002;62:4599–46044.

    PubMed  CAS  Google Scholar 

  64. 64.

    Hoogeveen AT, Rossetti S, Stoyanova V, et al. The transcriptional corepressor MTG16a contains a novel nucleolar targeting sequence deranged in t (16; 21)-positive myeloid malignancies.Oncogene. 2002;21:6703–6712.

    Article  CAS  Google Scholar 

  65. 65.

    Golub TR, Barker GF, Bohlander SK, et al. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia.Proc NatlAcad Sci USA. 1995;92:4917–4921.

    Article  CAS  Google Scholar 

  66. 66.

    Hiebert SW, Sun W, Davis JN, et al. The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription.Mol Cell Biol. 1996;16:1349–1355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Fears S, Gavin M, Zhang DE, et al. Functional characterization ofETV6 andETV6/CBFA2 in the regulation of theMCSFR proximal promoter.Proc Natl Acad Sci USA. 1997;94:1949–1954.

    Article  CAS  Google Scholar 

  68. 68.

    Fenrick R, Amann JM, Lutterbach B, et al. Both TEL and AML-1 contribute repression domains to the t(12;21) fusion protein.Mol Cell Biol. 1999;19:6566–6574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Sawinska M, Ladon D. Mechanism, detection and clinical significance of the reciprocal translocation t(12;21)(p12;q22) in the children suffering from acute lymphoblastic leukaemia.Leuk Res. 2004;28:35–42.

    Article  CAS  Google Scholar 

  70. 70.

    Guidez F, Petrie K, Ford AM, et al. Recruitment of the nuclear receptor corepressor N-CoR by the TEL moiety of the childhood leukemia-associated TEL-AML1 oncoprotein.Blood. 2000;96:2557–25611.

    PubMed  CAS  Google Scholar 

  71. 71.

    Gunji H, Waga K, Nakamura F, et al. TEL/AML1 shows dominant- negative effects over TEL as well as AML1.Biochem Biophys Res Commun. 2004;322:623–630.

    Article  CAS  Google Scholar 

  72. 72.

    Wang LC, Swat W, Fujiwara Y, et al. TheTEL/ETV6 gene is required specifically for hematopoiesis in the bone marrow.Genes Dev. 1998; 12:2392–2402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Andreasson P, Schwaller J, Anastasiadou E, Aster J, Gilliland DG. The expression ofETV6/CBFA2 (TEL/AML1) is not sufficient for the transformation of hematopoietic cell lines in vitro or the induction of hematologic disease in vivo.Cancer Genet Cytogenet. 2001; 130:93–104.

    Article  CAS  Google Scholar 

  74. 74.

    Bernardin F, Yang Y, Cleaves R, et al. TEL-AML1, expressed from t(12;21) in human acute lymphocytic leukemia, induces acute leukemia in mice.Cancer Res. 2002;62:3904–3908.

    PubMed  CAS  Google Scholar 

  75. 75.

    Tsuzuki S, Seto M, Greaves M, Enver T. Modeling first-hit functions of the t(12;21)TEL-AML1 translocation in mice.Proc Natl Acad Sci USA. 2004;101:8443–8448.

    Article  CAS  Google Scholar 

  76. 76.

    Song WJ, Sullivan MG, Legare RD, et al. Haploinsufficiency ofCBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia.Nat Genet. 1999;23:166–1755.

    Article  CAS  Google Scholar 

  77. 77.

    Osato M. Point mutations in theRUNX1/AML1 gene: another actor in RUNX leukemia.Oncogene. 2004;23:4284–4296.

    Article  CAS  Google Scholar 

  78. 78.

    Osato M, Asou N, Abdalla E, et al. Biallelic and heterozygous point mutations in the Runt domain of theAMLl/PEBP2αB gene associated with myeloblastic leukemias.Blood. 1999;93:1817–18244.

    PubMed  CAS  Google Scholar 

  79. 79.

    Harada H, Harada Y, Niimi H, Kyo T, Kimura A, Inaba T. High incidence of somatic mutations in theAML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia.Blood. 2004;103:2316–2324.

    Article  CAS  Google Scholar 

  80. 80.

    Michaud J, Wu F, Osato M, et al. In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet dis- order with predisposition to acute myelogenous leukemia: impli- cations for mechanisms of pathogenesis.Blood. 2002;99:1364–13722.

    Article  CAS  Google Scholar 

  81. 81.

    Kurokawa M, Tanaka T, Tanaka K, et al. Overexpression of the AML1 proto-oncoprotein in NIH3T3 cells leads to neoplastic transformation depending on the DNA-binding and transactivational potencies.Oncogene. 1996;12:883–892.

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Tetsuya Yamagata or Kazuhiro Maki or Kinuko Mitani.

About this article

Cite this article

Yamagata, T., Maki, K. & Mitani, K. Runx1/AML1 in Normal and Abnormal Hematopoiesis. Int J Hematol 82, 1–8 (2005). https://doi.org/10.1532/IJH97.05075

Download citation

Key words

  • Runx1/AML1
  • Chromosomal translocation
  • Point mutation
  • Leukemia
  • Transcription factor