International Journal of Hematology

, Volume 83, Issue 1, pp 86–91 | Cite as

Influence of Radiation Dose Rate and Lung Dose on Interstitial Pneumonitis after Fractionated Total Body Irradiation: Acute Parotitis May Predict Interstitial Pneumonitis

  • Yasushi Nagata
  • Seiji Tachiiri
  • Takashi Okada
  • Shinsuke Yano
  • Masahiro Hiraoka
  • Takayuki Ishikawa
  • Takashi Uchiyama
  • Natsuo Oya
  • Takashi Sakamoto
  • Keisuke Sasai


This study evaluated patients for the influence of the dose rate and lung dose of fractionated total body irradiation (TBI) in preparation for allogeneic bone marrow transplantation (BMT) on the subsequent development of interstitial pneumonitis (IP). Sixty-six patients at our institute were treated with TBI followed by BMT. All of the patients received a total TBI dose of 12 Gy given in 6 fractions over 3 days and were divided into 3 groups according to the radiation dose rate and lung dose: group A, lung dose of 8 Gy (n = 18); group B, lung dose of 12 Gy at 8 cGy/min (n = 25); and group C, lung dose of 12 Gy at 19 cGy/min (n = 23). The overall survival rate, the cumulative incidence of relapse, and the cumulative incidence of IP were evaluated in relation to various potential indicators of future IP. There were no significant differences in survival and relapse rates between patient group A and combined groups B and C. Clinically significant IP occurred in 13 patients. The cumulative incidence of IP was significantly higher in patients who developed acute parotitis as indicated by either an elevation in the serum amylase level or parotid pain of grade 1 to 2. There was no difference in IP incidence among groups A, B, and C. There was no significant difference in IP incidence between lung dose values of 8 Gy (with lung shielding) and 12 Gy (without lung shielding) and between dose rate values of 8 cGy/min and 19 cGy/ min, at least when TBI was given in 6 fractions. The presence of acute parotitis during or just after TBI may be a predictor of IP.

Key words

Total body irradiation Interstitial pneumonitis Lung dose Dose rate Parotitis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bieri S, Helg C, Chapuis B, Miralbell R. Total body irradiation before allogeneic bone marrow transplantation: is more dose better? IntJ Radiat Oncol Biol Phys. 2001;49:1071–1077.CrossRefGoogle Scholar
  2. 2.
    Girinsky T, Benhamou E, Bourhis JH, et al. Prospective randomized comparison of single-dose versus hyperfractionated total-body irradiation in patients with hematologic malignancies. J Clin Oncol. 2000;18:981–986.CrossRefPubMedGoogle Scholar
  3. 3.
    Sanders JE. Chronic graft-versus-host disease and late effects after hematopoietic stem cell transplantation. Int J Hematol. 2002;76(suppl 2):15–28.CrossRefGoogle Scholar
  4. 4.
    Aristei C, Aversa F, Chionne F, Martelli MF, Latini P. Interstitial pneumonitis in acute leukemia patients submitted to T-depleted matched and mismatched bone marrow transplantation. Int J Radiat Oncol Biol Phys. 1998;41:651–657.CrossRefPubMedGoogle Scholar
  5. 5.
    Carlson K, Backlund L, Smedmyr B, Oberg G, Simonsson B. Pulmonary function and complications subsequent to autologous bone marrow transplantation. Bone Marrow Transplant. 1994;14:805–811.PubMedGoogle Scholar
  6. 6.
    Chen CI, Abraham R, Tsang R, Crump M, Keating A, Stewart AK. Radiation-associated pneumonitis following autologous stem cell transplantation: predictive factors, disease characteristics and treatment outcomes. Bone Marrow Transplant. 2001;27:177–182.CrossRefPubMedGoogle Scholar
  7. 7.
    Cosset JM, Baume D, Pico JL, et al. Single dose versus hyperfrac-tionated total body irradiation before allogeneic bone marrow transplantation: a non-randomized comparative study of 54 patients at the Institut Gustave-Roussy. Radiother Oncol. 1989;15:151–160.CrossRefPubMedGoogle Scholar
  8. 8.
    Della Volpe A, Ferreri AJ, Annaloro C, et al. Lethal pulmonary complications significantly correlate with individually assessed mean lung dose in patients with hematologic malignancies treated with total body irradiation. Int J Radiat Oncol Biol Phys. 2002;52:483–488.CrossRefGoogle Scholar
  9. 9.
    Demirer T, Petersen FB, Appelbaum FR, et al. Allogeneic marrow transplantation following cyclophosphamide and escalating doses of hyperfractionated total body irradiation in patients with advanced lymphoid malignancies: a phase I/II trial. Int J Radiat Oncol Biol Phys. 1995;32:1103–1109.CrossRefPubMedGoogle Scholar
  10. 10.
    Gerrard GE, Vail A, Taylor RE, et al. Toxicity and dosimetry of fractionated total body irradiation prior to allogeneic bone marrow transplantation using a straightforward radiotherapy technique. Clin Oncol (R Coll Radiol). 1998;10:379–383.CrossRefPubMedGoogle Scholar
  11. 11.
    Gopal R, Ha CS, Tucker SL, et al. Comparison of two total body irradiation fractionation regimens with respect to acute and late pulmonary toxicity. Cancer. 2001;92:1949–1958.CrossRefPubMedGoogle Scholar
  12. 12.
    Gore EM, Lawton CA, Ash RC, Lipchik RJ. Pulmonary function changes in long-term survivors of bone marrow transplantation. Int J Radiat Oncol Biol Phys. 1996;36:67–75.CrossRefPubMedGoogle Scholar
  13. 13.
    Hartsell WF, Czyzewski EA, Ghalie R, Kaizer H. Pulmonary complications of bone marrow transplantation: a comparison of total body irradiation and cyclophosphamide to busulfan and cyclophosphamide. Int J Radiat Oncol Biol Phys. 1995;32:69–73.CrossRefPubMedGoogle Scholar
  14. 14.
    Hjiyiannakis P, Mehta J, Milan S, Powles R, Hinson J, Tait D. Melphalan, single-fraction total-body irradiation and allogeneic bone marrow transplantation for acute leukemia: review of transplant-related mortality. Leuk Lymphoma. 1997;25:565–572.CrossRefPubMedGoogle Scholar
  15. 15.
    Inoue T, Ikeda H, Yamazaki H, et al. Role of total body irradiation as based on the comparison of preparation regimens for allogeneic bone marrow transplantation for acute leukemia in first complete remission. Strahlenther Onkol. 1993;169:250–255.PubMedGoogle Scholar
  16. 16.
    Kader HA, Khanna S, Hutchinson RM, Aukett RJ, Archer J. Pulmonary complications of bone marrow transplantation: the impact of variations in total body irradiation parameters. Clin Oncol (R Coll Radiol). 1994;6:96–101.CrossRefPubMedGoogle Scholar
  17. 17.
    Labar B, Bogdanic V, Nemet D et al. Total body irradiation with or without lung shielding for allogeneic bone marrow transplantation. Bone Marrow Transplant. 1992;9:343–347.PubMedGoogle Scholar
  18. 18.
    McAfee SL, Powell SN, Colby C, Spitzer TR. Dose-escalated total body irradiation and autologous stem cell transplantation for refractory hematologic malignancy. Int J Radiat Oncol Biol Phys. 2002;53:151–156.CrossRefPubMedGoogle Scholar
  19. 19.
    Morgan TL, Falk PM, Kogut N, Shah KH, Tome M, Kagan AR. A comparison of single-dose and fractionated total-body irradiation on the development of pneumonitis following bone marrow transplantation. Int J Radiat Oncol Biol Phys. 1996;36:61–66.CrossRefPubMedGoogle Scholar
  20. 20.
    Ott M, Schmidberger H, Wormann B, Albrecht CF, Pradier O, Hess CF. Involved-field irradiation in combination with total-body irradiation (TBI) does not increase short-term toxicity compared to TBI alone in patients with advanced-stage low-grade non-Hodgkin lymphoma. Strahlenther Onkol. 2002;178:245–251.CrossRefPubMedGoogle Scholar
  21. 21.
    Ozsahin M, Belkacemi Y, Pene F, et al. Interstitial pneumonitis following autologous bone-marrow transplantation conditioned with cyclophosphamide and total-body irradiation. Int J Radiat Oncol Biol Phys. 1996;34:71–77.CrossRefPubMedGoogle Scholar
  22. 22.
    Sobecks RM, Daugherty CK, Hallahan DE, Laport GF, Wagner ND, Larson RA. A dose escalation study of total body irradiation followed by high-dose etoposide and allogeneic blood stem cell transplantation for the treatment of advanced hematologic malignancies. Bone Marrow Transplant. 2000;25:807–813.CrossRefPubMedGoogle Scholar
  23. 23.
    Thomas O, Mahe M, Campion L, et al. Long-term complications of total body irradiation in adults. Int J Radiat Oncol Biol Phys. 2001;49:125–131.CrossRefPubMedGoogle Scholar
  24. 24.
    Belkacemi Y, Pene F, Touboul E, et al. Total-body irradiation before bone marrow transplantation for acute leukemia in first or second complete remission: results and prognostic factors in 326 consecutive patients. Strahlenther Onkol. 1998;174:92–104.CrossRefPubMedGoogle Scholar
  25. 25.
    Piroth MD, Zierhut D, van Kampen M, Sroka-Perez G, Wannen-macher M. Lung dose depending on exact patient positioning during total body irradiation (TBI): isoeffectiveness considerations to assess the risk of interstitial pneumonia after TBI. Strahlenther Onkol. 2002;178:43–49.CrossRefPubMedGoogle Scholar
  26. 26.
    Resbeut M, Cowen D, Blaise D, et al. Fractionated or single-dose total body irradiation in 171 acute myeloblastic leukemias in first complete remission: is there a best choice? Int J Radiat Oncol Biol Phys. 1995;31:509–517.CrossRefPubMedGoogle Scholar
  27. 27.
    Gogna NK, Morgan G, Downs K, Atkinson K, Biggs J. Lung dose rate and interstitial pneumonitis in total body irradiation for bone marrow transplantation. Australas Radiol. 1992;36:317–320.CrossRefPubMedGoogle Scholar
  28. 28.
    Ashida T, Higashishiba M, Sumimoto Y, et al. Serum KL-6 levels in patients with pulmonary complications after allogeneic bone marrow transplantation. Int J Hematol. 2001;74:464–468.CrossRefPubMedGoogle Scholar
  29. 29.
    Matsunaga T, Sakamaki S, Ishigaki S, et al. Use of PCR serum in diagnosing and monitoring cytomegalovirus reactivation in bone marrow transplant recipients. Int J Hematol. 1999;69:105–111.PubMedGoogle Scholar
  30. 30.
    Alyea E, Neuberg D, Mauch P, et al. Effect of total body irradiation dose escalation on outcome following T-cell-depleted allogeneic bone marrow transplantation. Biol Blood Marrow Transplant. 2002;8:139–144.CrossRefPubMedGoogle Scholar
  31. 31.
    Szekely J, Esik O. Prospective randomized comparison of single-dose versus hyperfractionated total-body irradiation in patients with hematologic malignancies. Strahlenther Onkol. 2000;176:584–585.PubMedGoogle Scholar
  32. 32.
    Safwat A, Nielsen OS, El-Badawy S, Overgaard J. Effect of radiation dose rate and cyclophosphamide on pulmonary toxicity after total body irradiation in a mouse model. Int J Radiat Oncol Biol Phys. 1996;34:85–91.CrossRefPubMedGoogle Scholar
  33. 33.
    Barrett A, Jacobs A, Kohn J, Raymond J, Powles RL. Changes in serum amylase and its isoenzymes after whole body irradiation. Br Med J (Clin Res Ed). 1982;285:170–171.CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Becciolini A, Giannardi G, Cionini L, Porciani S, Fallai C, Pirtoli L. Plasma amylase activity as a biochemical indicator of radiation injury to salivary glands. Acta Radiol Oncol. 1984;23:9–14.CrossRefPubMedGoogle Scholar
  35. 35.
    Brattstrom C, Tollemar J, Ringden O, Bergstrom K, Tyden G. Isoamylase levels in bone marrow transplant patients are affected by total body irradiation and not by graft-versus-host disease. Transpl Int. 1991;4:96–98.CrossRefPubMedGoogle Scholar
  36. 36.
    Dubray B, Girinski T, Thames HD, et al. Post-irradiation hyperamy-lasemia as a biological dosimeter. Radiother Oncol. 1992;24:21–26.CrossRefPubMedGoogle Scholar
  37. 37.
    Hofmann R, Schreiber GA, Willich N, Westhaus R, Bogl KW. Increased serum amylase in patients after radiotherapy as a probable bioindicator for radiation exposure. Strahlenther Onkol. 1990;166:688–695.PubMedGoogle Scholar
  38. 38.
    Junglee D, Katrak A, Mohiuddin J, Blacklock H, Prentice HG, Dandona P. Salivary amylase and pancreatic enzymes in serum after total body irradiation. Clin Chem. 1986;32:609–610.PubMedGoogle Scholar
  39. 39.
    Stone HB, Coleman CN, Anscher MS, McBride WH. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol. 2003;4:529–536.CrossRefPubMedGoogle Scholar
  40. 40.
    Chen Y, Rubin P, Williams J, Hernady E, Smudzin T, Okunieff P. Circulating IL-6 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys. 2001;49:641–648.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2006

Authors and Affiliations

  • Yasushi Nagata
    • 1
  • Seiji Tachiiri
    • 1
  • Takashi Okada
    • 1
  • Shinsuke Yano
    • 1
  • Masahiro Hiraoka
    • 1
  • Takayuki Ishikawa
    • 2
  • Takashi Uchiyama
    • 2
  • Natsuo Oya
    • 1
    • 3
  • Takashi Sakamoto
    • 1
    • 3
  • Keisuke Sasai
    • 1
    • 4
  1. 1.Departments of Therapeutic Radiology and Oncology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
  2. 2.Hematology/Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
  3. 3.Department of Radiation Oncology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
  4. 4.Department of Radiation Oncology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan

Personalised recommendations