BMI-1 is Highly Expressed in M0-Subtype Acute Myeloid Leukemia

Abstract

Recent studies have suggested that one of the polycomb group genes,BMI- 1, has an important role in the maintenance of normal and leukemic stem cells by repressing theINK4a/ARF locus. Here, we quantitatively examinedBMI- 1 expression level in samples from patients with acute myeloid leukemia (AML) and other hematologic malignancies. Moderate to highBMI- 1 expression was detected in AML patients, and theBMI- 1 expression levels in AML samples were significantly higher than in normal bone marrow controls(P =.0011). Specimens of French-American-British classification subtype M0 showed higher relative expression of the BMI-1 transcript (median, 390.2 x 10-3) than the other subtypes (median, 139.0 x 10-3)(P <.0001). Leukemia other than AML showed low to moderate expression. INK4a-ARF transcript expression tended to be inverse proportion to that of BMI-1. In an M0 patient with a high BMI-1 transcript level, the INK4a-ARF transcript level fell promptly and maintained a low value after the patient achieved complete remission. These results indicated that a subgroup of M0 patients has a high expression level of polycomb group geneBMI- 1, which may contribute to leukemogenesis.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells.Nature. 2003;423:302–3055.

    Article  CAS  Google Scholar 

  2. 2.

    Lessard J, Sauvageau G.Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells.Nature. 2003;423:255–260.

    Article  CAS  Google Scholar 

  3. 3.

    Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M. The oncogene and Polycomb-group genebmi-1 regulates cell proliferation and senescence through theink4a locus.Nature. 1999; 397:164–168.

    Article  CAS  Google Scholar 

  4. 4.

    Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison S.J. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation.Nature. 2003;425:962–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    van LohuizenM, Verbeek S, Scheijen B, Wientjens E, van der Gulden H, Berns A. Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging.Cell. 1991;65:737–752.

    Article  Google Scholar 

  6. 6.

    Alkema MJ, Wiegant J, Raap AK, Berns A, van Lohuizen M. Characterization and chromosomal localization of the human proto-oncogene BMI-1.Hum Mol Genet. 1993;2:1597–1603.

    Article  CAS  Google Scholar 

  7. 7.

    Pui CH, Raimondi SC, Murphy SB, et al. An analysis of leukemic cell chromosomal features in infants.Blood. 1987;69:1289–1293.

    PubMed  CAS  Google Scholar 

  8. 8.

    Berger R, Baranger L, Bernheim A, Valensi F, Flandrin G. Cytogenetics of T-cell malignant lymphoma: report of 17 cases and review of the chromosomal breakpoints.Cancer Genet Cytogenet. 1988;36:123–1300.

    Article  CAS  Google Scholar 

  9. 9.

    Bea S, Tort F, Pinyol M, et al.BMI-1 gene amplification and over-expression in hematological malignancies occur mainly in mantle cell lymphomas.Cancer Res. 2001;61:2409–2412.

    PubMed  CAS  Google Scholar 

  10. 10.

    Vonlanthen S, Heighway J, Altermatt HJ, et al. The bmi-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression.Br J Cancer. 2001; 84:1372–1376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Dimri GP, Martinez JL, Jacobs JJ, et al. TheBmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells.Cancer Res. 2002;62:4736–4745.

    PubMed  CAS  Google Scholar 

  12. 12.

    Hirose Y, Kiyoi H, Itoh K, Kato K, Saito H, Naoe T. B-cell precursors differentiated from cord blood CD34+ cells are more immature than those derived from granulocyte colony-stimulating factor-mobilized peripheral blood CD34+ cells.Immunology. 2001; 104:410–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Jen J, Harper JW, Bigner SH, et al. Deletion of p16 and p15 genes in brain tumors.Cancer Res. 1994;54:6353–6358.

    PubMed  CAS  Google Scholar 

  14. 14.

    Voncken JW, Schweizer D, Aagaard L, Sattler L, Jantsch MF, van LohuizenM. Chromatin-association of the Polycomb group protein BMI1 is cell cycle-regulated and correlates with its phosphorylation status.J Cell Sci. 1999;112(pt 24):4627–4639.

    Google Scholar 

  15. 15.

    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.Nat Med. 1997;3:730–737.

    Article  CAS  Google Scholar 

  16. 16.

    Xia ZB, Anderson M, Diaz MO, Zeleznik-Le NJ. MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein.Proc Natl Acad Sci USA. 2003;100:8342–8347.

    Article  CAS  Google Scholar 

  17. 17.

    Drexler HG. Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15, p16, p18 and p19 in human leukemia-lymphoma cells.Leukemia. 1998;12:845–859.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Masashi Sawa or Kazuhito Yamamoto or Toshiya Yokozawa or Hitoshi Kiyoi or Asahi Hishida or Tomohiro Kajiguchi or Masao Seto or Akio Kohno or Kunio Kitamura or Yoshie Itoh or Norio Asou or Nobuyuki Hamajima or Nobuhiko Emi or Tomoki Naoe.

About this article

Cite this article

Sawa, M., Yamamoto, K., Yokozawa, T. et al. BMI-1 is Highly Expressed in M0-Subtype Acute Myeloid Leukemia. Int J Hematol 82, 42–47 (2005). https://doi.org/10.1532/IJH97.05013

Download citation

Key words

  • BMI-1
  • Leukemia
  • M0