Advertisement

International Journal of Hematology

, Volume 82, Issue 1, pp 28–34 | Cite as

A Novel Mutation in the Juxtamembrane Intracellular Sequence of the Granulocyte Colony-Stimulating Factor (G-CSF) Receptor Gene in a Patient with Severe Congenital Neutropenia Augments G-CSF Proliferation Activity but Not through the MAP Kinase Cascade

  • Toshihiro Yokoyama
  • Seiichi Okamura
  • Yoshinobu Asano
  • Kenjirou Kamezaki
  • Akihiko Numata
  • Haruko Kakumitsu
  • Koutarou Shide
  • Hitoshi Nakashima
  • Taisuke Kanaji
  • Yuichi Sekine
  • Yumi Mizuno
  • Jun Okamura
  • Tadashi Matsuda
  • Mine Harada
  • Yoshiyuki Niho
  • Kazuya Shimoda
Article

Abstract

We analyzed the structure of the granulocyte colony-stimulating factor (G-CSF) receptor gene in a 6-year-old female patient with severe congenital neutropenia (SCN) who experienced severe recurrent infections since 1 month of age. There is no family history of any similar disease. When the patient was 4 months old, she began receiving treatment with recombinant human G-CSF that resulted in a small increase in the neutrophil count sufficient for the prevention and treatment of bacterial infection. An analysis of complementary DNA for the patient’s G-CSF receptor revealed a 3-base pair deletion in the juxtamembrane intracellular sequence. This deletion at the beginning of exon 16 was thought to be caused by alternative splicing; analysis of the DNA revealed a G-to-A point mutation of the final nucleotide of intron 15. To evaluate the functional activity of the G-CSF receptor with this 3-base pair deletion of the juxtamembrane region, we transfected this G-CSF receptor mutant into an interleukin 3-dependent cell line, BAF/3. BAF/3 cells expressing the mutant G-CSF receptor showed augmented proliferation activity in response to G-CSF compared with cells having the wild-type G-CSF receptor. Although the proliferation signal of G-CSF in normal hematopoiesis is transduced through the activation of MAP kinases, this G-CSF receptor mutant showed decreased activation of ERK1/2 in response to G-CSF compared with the wild type, but the transduced signal for Stat3 activation by G-CSF was of the same magnitude as that of the wild-type G-CSF receptor. This result means that the augmented proliferation activity in response to G-CSF that we observed in cells having the G-CSF receptor gene with the 3-base pair deletion is transduced through an intracellular signaling pathway other than MAP kinase. Because SCN patients with a mutation in the G-CSF receptor frequently develop leukemia, this 3-base pair deletion in the juxtamembrane sequence of the G-CSF receptor gene in this patient may be one step in the course of leukemic transformation.

Key words

Congenital neutropenia G-CSF receptor MAP kinase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nagata S, Tsuchiya M, Asano S, et al. Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor.Nature. 1986;319:415–418.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Souza LM, Boone TC, Gabrilove J, et al. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells.Science. 1986;232:61–65.CrossRefGoogle Scholar
  3. 3.
    Kostmann R. Infantile genetic agranulocytosis: agranulocytosis infantilis hereditaria.Acta Paediatr. 1956;45(suppl 105):1–78.Google Scholar
  4. 4.
    Kostman R. Infantile genetic agranulocytosis: a review with presentation of ten new cases.Acta Paediatr Scand. 1975;64:362–368.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kawaguchi Y, Kobayashi M, Tanabe A, et al. Granulopoiesis in patients with congenital neutropenia.Am J Hematol. 1985;20:223–2344.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bonilla MA, Gillio AP, Ruggeiro M, et al. Effects of recombinant human granulocyte colony-stimulating factor on neutropenia in patients with congenital agranulocytosis.N Engl J Med. 1989;320:1574–15800.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Weite K, Zeidler C, Reiter A, et al. Differential effects of granulocyte- macrophage colony-stimulating factor and granulocyte colony- stimulating factor in children with severe congenital neutropenia.Blood. 1990;75:1056–1063.Google Scholar
  8. 8.
    Jones EA, Bolyard AA, Dale DC. Quality of life of patients with severe chronic neutropenia receiving long-term treatment with granulocyte colony-stimulating factor.JAMA. 1993;270:1132–1133.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Glasser L, Duncan BR, Corrigan JJ Jr. Measurement of serum granulocyte colony-stimulating factor in a patient with congenital agranulocytosis (Kostmann’s syndrome).Am J Dis Child. 1991;145:925–9288.Google Scholar
  10. 10.
    Pietsch T, Buhrer C, Mempel K, et al. Blood mononuclear cells from patients with severe congenital neutropenia are capable of producing granulocyte colony-stimulating factor.Blood. 1991;77:1234–12377.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Kyas U, Pietsch T, Weite K. Expression of receptors for granulocyte colony-stimulating factor on neutrophils from patients with severe congenital neutropenia and cyclic neutropenia.Blood. 1992;79:1144–11477.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Tidow N, Pilz C, Kasper B, Weite K. Frequency of point mutations in the gene for the G-CSF receptor in patients with chronic neutropenia undergoing G-CSF therapy.Stem Cells. 1997;15(suppl 1):113–1199, discussion 120.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Touw IP, Dong F. Severe congenital neutropenia terminating in acute myeloid leukemia: disease progression associated with mutations in the granulocyte-colony stimulating factor receptor gene.Leuk Res. 1996;20:629–631.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hunter MG, Avalos BR. Granulocyte colony-stimulating factor receptor mutations in severe congenital neutropenia transforming to acute myelogenous leukemia confer resistance to apoptosis and enhance cell survival.Blood. 2000;95:2132–2137.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Dale DC, Person RE, Bolyard AA, et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia.Blood. 2000;95:2132–2137.Google Scholar
  16. 16.
    Horwitz M, Benson KF, Person RE, Aprikyan AG, Dale DC. Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis.Nat Genet. 1999;23:433–436.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fukunaga R, Ishizaka-Ikeda E, Nagata S. Growth and differentiation signals mediated by different regions in the cytoplasmic domain of granulocyte colony-stimulating factor receptor.Cell. 1993;74:1079–1087.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mizuno Y, Hara T, Nagata M, et al. Serum granulocyte colony-stimulating factor levels in chronic neutropenia of infancy.Pediatr Hematol Oncol. 1990;7:377–381.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Freedman MH, Alter BP. Risk of myelodysplastic syndrome and acute myeloid leukemia in congenital neutropenias.Semin Hematol. 2002;39:128–133.CrossRefGoogle Scholar
  20. 20.
    Fukunaga R, Ishizaka-Ikeda E, Seto Y, Nagata S. Expression cloning of a receptor for murine granulocyte colony-stimulating factor.Cell. 1990;61:341–350.CrossRefPubMedGoogle Scholar
  21. 21.
    Shimoda K, Feng J, Murakami H, et al. Jakl plays an essential role for receptor phosphorylation and Stat activation in response to granulocyte colony-stimulating factor.Blood. 1997;90:597–604.PubMedGoogle Scholar
  22. 22.
    Fukunaga R, Seto Y, Mizushima S, Nagata S. Three different mRNAs encoding human granulocyte colony-stimulating factor receptor.Proc NatlAcad Sci USA. 1990;87:8702–8706.CrossRefGoogle Scholar
  23. 23.
    Seto Y, Fukunaga R, Nagata S. Chromosomal gene organization od ing human granulocyte colony-stimulating factor receptor.J Immunol. 1992;148:259–266.PubMedGoogle Scholar
  24. 24.
    Shibata S, Asano Y, Yokoyama T, et al. Analysis of the granulocyte colony-stimulating factor receptor. gene structure using lethalit in myeloid leukemia and myelodysplastic syndrome.Eur J Haematol. 1998;60:197–201.CrossRefPubMedGoogle Scholar
  25. 25.
    Dong F, Hoefsloot LH, Schelen AM, et al. Identification of a nonsense mutation in the granulocyte-colony-stimulating factor receptor in severe congenital neutropenia.Proc Natl Acad Sci USA. 1994;91:4480–4484.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Fukunaga R, Ishizaka-Ikeda E, Pan CX, Seto Y, Nagata S. Functional domains of the granulocyte colony-stimulating factor receptor.EMBO J. 1991;10:2855–2865.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Dong F, van BuitenenC, Pouwels K, Hoefsloot LH, Lowenberg B, Touw IP. Distinct cytoplasmic regions of the human granulocyte colony-stimulating factor receptor involved in induction of proliferation and maturation.Mol Cell Biol. 1993;13:7774–7781.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ziegler SF, Bird TA, Morella KK, Mosley B, Gearing DP, Baumann H. Distinct regions of the human granulocyte-colony- stimulating factor receptor cytoplasmic domain are required for proliferation and gene induction.Mol Cell Biol. 1993;13:2384–23900.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Awaya N, Uchida H, Miyakawa Y, et al. Novel variant isoform of G-CSF receptor involved in induction of proliferation of FDCP-2 cells: relevance to the pathogenesis of myelodysplastic syndrome.J. Cell Physiol. 2002;191:327–335.CrossRefGoogle Scholar
  30. 30.
    Dong F, Brynes RK, Tidow N, Weite K, Lowenberg B, Touw IP. Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia.N Engl J Med. 1995;333:487–493.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tidow N, Pilz C, Teichmann B, et al. Clinical relevance of point mutations in the cytoplasmic domain of the granulocyte colony- stimulating factor receptor gene in patients with severe congenital neutropenia.Blood. 1997;89:2369–2375.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Corey SJ, Burkhardt AL, Bolen JB, Geahlen RL, Tkatch LS, Tweardy DJ. Granulocyte colony-stimulating factor receptor signaling involves the formation of a three-component complex with Lyn and Syk protein-tyrosine kinases.Proc Natl Acad Sci USA. 1994;91:4683–4687.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Matsuda T, Hirano T. Association of p72 tyrosine kinase with Stat factors and its activation by interleukin-3, interleukin-6, and granulocyte colony-stimulating factor.Blood. 1994;83:3457–3461.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Weite T, Zhang SS, Wang T, et al. STAT3 deletion during hematopoiesis causes Crohn’s disease-like pathogenesis and lethality: a critical role of STAT3 in innate immunity.Proc Natl Acad Sci USA 2003;100:1879–1884.CrossRefGoogle Scholar
  35. 35.
    Lee CK, Raz R, Gimeno R, et al. STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation.Immunity. 2002;17:63–72.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kamezaki K, Shimoda K, Numata A, et al. Roles of Stat3 and ERK in G-CSF signaling.Stem Cells. 2005;23:252–263.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Meraz MA, White JM, Sheehan KC, et al. Targeted disruption of the Statl gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway.Cell. 1996;84:431–442.CrossRefPubMedGoogle Scholar
  38. 38.
    Teglund S, McKay C, Schuetz E, et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine ingpathway.Cell. 1996;84:431–442.CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2005

Authors and Affiliations

  • Toshihiro Yokoyama
    • 1
    • 2
    • 3
  • Seiichi Okamura
    • 3
  • Yoshinobu Asano
    • 4
  • Kenjirou Kamezaki
    • 1
    • 2
  • Akihiko Numata
    • 1
    • 2
  • Haruko Kakumitsu
    • 1
    • 2
  • Koutarou Shide
    • 1
    • 2
  • Hitoshi Nakashima
    • 1
    • 2
  • Taisuke Kanaji
    • 1
    • 2
  • Yuichi Sekine
    • 5
  • Yumi Mizuno
    • 6
  • Jun Okamura
    • 7
  • Tadashi Matsuda
    • 5
  • Mine Harada
    • 1
    • 2
  • Yoshiyuki Niho
    • 4
  • Kazuya Shimoda
    • 1
    • 2
  1. 1.The First Department of Internal Medicine, Faculty of MedicineKyushu UniversityFukuokaJapan
  2. 2.Medicine and Biosystemic ScienceKyushu University Graduate School of Medical SciencesFukuoka
  3. 3.Department of Hematology and Clinicalc Research LaboratoryNational Kyushu Medical CenterFukuoka
  4. 4.Chihaya HospitalFukuoka
  5. 5.Department of Immunology, Graduate School of Pharmaceutical SciencesHokkaido UniversitySapporo
  6. 6.Fukuoka Children’s HospitalFukuoka
  7. 7.Department of PediatricsKyushu Cancer CenterFukuokaJapan

Personalised recommendations