Skip to main content
Log in

Lineage Promiscuous Expression of Transcription Factors in Normal Hematopoiesis

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Hematopoiesis has provided a valuable model for examining how genetic programs are established and executed in terms of cell fate decision. Identification of common myeloid and lymphoid progenitors allows us to directly assess the regulatory mechanisms of lineage commitment. Multiple markers of hematopoietic lineages are coexpressed in hematopoietic stem cells and progenitors, a phenomenon referred to as lineage priming. Promiscuous expression of several lineage-affiliated genes precedes lineage commitment but does not alter the biological potential of hematopoietic stem cells and multipotent progenitors. Promiscuous accessibility of multiple programs allows flexibility in cell fate commitment at the multipotent stages, indicating that transcriptional promiscuity can operate in stem cells and progenitors to control their transition from multipotency to single-line age commitment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000;100:157–168.

    Article  PubMed  CAS  Google Scholar 

  2. Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by pheno- type. Immunity. 1994;l:661–673.

    Article  Google Scholar 

  3. Adolfsson J, Borge OJ, Bryder D, et al. Upregulation of Flt3 expression within the bone marrow Lin(-)Scal(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity. 2001;15:659–669.

    Article  PubMed  CAS  Google Scholar 

  4. Christensen JL, Weissman IL. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci U S A. 2001;98:14541–14546.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Metcalf D. Stem cells, pre-progenitor cells and lineage-committed cells: are our dogmas correct? Ann N Y Acad Sci. 1999;872:289–303.

    Article  PubMed  CAS  Google Scholar 

  6. Orkin SH. Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet. 2000;l:57–64.

    Article  CAS  Google Scholar 

  7. Akashi K, He X, Chen J, et al. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood. 2003;101:383–389.

    Article  PubMed  CAS  Google Scholar 

  8. Terskikh AV, Miyamoto T, Chang C, Diatchenko L, Weissman IL. Gene expression analysis of purified hematopoietic stem cells and committed progenitors. Blood. 2003;101:383–389.

    Article  CAS  Google Scholar 

  9. Hu M, Krause D, Greaves M, et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev. 1997; 11:774–785.

    Article  PubMed  CAS  Google Scholar 

  10. Enver T, Greaves M. Loops, lineage, and leukemia. Cell. 1998;94:9–12.

    Article  PubMed  CAS  Google Scholar 

  11. Enver T, Heyworth CM, Dexter TM. Do stem cells play dice? Blood. 1998;92:348–351.

    PubMed  CAS  Google Scholar 

  12. Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell. 1997; 91:661–672.

    Article  PubMed  CAS  Google Scholar 

  13. Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000;404:193–197.

    Article  PubMed  CAS  Google Scholar 

  14. Noguchi M, Nakamura Y, Russell SM, et al. Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science. 1993;262:1877–1880.

    Article  PubMed  CAS  Google Scholar 

  15. Peschon JJ, Morrissey PJ, Grabstein KH, et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mics. J Exp Med. 1994;180:1955–1960.

    Article  PubMed  CAS  Google Scholar 

  16. von Freeden-Jeffry U, Vieira P, Lucian LA, McNeil T, Burdach SE, Murray R. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med. 1995;181:1519–1526.

    Article  Google Scholar 

  17. Akashi K, Kondo M, von Freeden-Jeffry U, Murray R, Weissman IL. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell. 1997;89:1033–1041.

    Article  PubMed  CAS  Google Scholar 

  18. Akashi K, Kondo M, Weissman IL. Role of interleukin-7 in T-cell development from hematopoietic stem cells. Immunol Rev. 1998; 165:13–28.

    Article  PubMed  CAS  Google Scholar 

  19. Corcoran AE, Riddell A, Krooshoop D, Venkitaraman AR. Impaired immunoglobulin gene rearrangement in mice lacking the IL-7 receptor. Nature. 1998;391:904–907.

    Article  PubMed  CAS  Google Scholar 

  20. Felsenfeld G, Boyes J, Chung J, Clark D, Studitsky V. Chromatin structure and gene expression. Proc Natl Acad Sci U S A. 1996;93:9384–9388.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Berger SL, Felsenfeld G. Chromatin goes global. Mol Cell. 2001;8:263–268.

    Article  PubMed  CAS  Google Scholar 

  22. Weintraub H. Assembly and propagation of repressed and depressed chromosomal states. Cell. 1985;42:705–711.

    Article  PubMed  CAS  Google Scholar 

  23. Kontaraki J, Chen HH, Riggs A, Bonifer C. Chromatin fine structure profiles for a developmentally regulated gene: reorganization of the lysozyme locus before trans-activator binding and gene expression. Genes Dev. 2000;14:2106–2122.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Cross MA, Enver T. The lineage commitment of haemopoietic pro- genitor cells. Curr Opin Genet Dev. 1997;7:609–613.

    Article  PubMed  CAS  Google Scholar 

  25. Jimenez G, Griffiths SD, Ford AM, Greaves MF, Enver T. Activation of the beta-globin locus control region precedes commitment to the erythroid lineage. Proc Natl Acad Sci U S A. 1992;89:10618–10622.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Delassus S, Titley I, Enver T. Functional and molecular analysis of hematopoietic progenitors derived from the aorta-gonad- mesonephros region of the mouse embryo. Blood. 1999;94:1495–1503.

    PubMed  CAS  Google Scholar 

  27. Shivdasani RA, Fujiwara Y, McDevitt MA, Orkin SH. A lineage- selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J. 1997;16:3965–3973.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Yamaguchi Y, Zon LI, Ackerman SJ, Yamamoto M, Suda T. Forced GATA-1 expression in the murine myeloid cell line Ml: induction of c-Mpl expression and megakaryocytic/erythroid differentiation. Blood. 1998;91:450–457.

    PubMed  CAS  Google Scholar 

  29. Tsai FY, Keller G, Kuo FC, et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature. 1994;371:221–226.

    Article  PubMed  CAS  Google Scholar 

  30. Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, et al. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell. 1995;81:695–704.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci U S A. 1997;94:569–574.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tenen DG, Hromas R, Licht JD, Zhang DE. Transcription factors, normal myeloid development, and leukemia. Blood. 1997;90:569–574.

    Google Scholar 

  33. Morgan B, Sun L, Avitahl N, et al. Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J. 1997;16:2004–2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ho IC, Vorhees P, Marin N, et al. Human GATA-3: a lineage- restricted transcription factor that regulates the expression of the T cell receptor alpha gene. EMBO J. 1991;10:1187–1192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Nutt SL, Heavey B, Rolink AG, Busslinger M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature. 1999;401:556–562.

    Article  PubMed  CAS  Google Scholar 

  36. Allen RD, 3rd, Bender TP, Siu G. c-Myb is essential for early T cell development. Genes Dev. 1999;13:1073–1078.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Badiani P, Corbella P, Kioussis D, Marvel J, Weston K. Dominant interfering alleles define a role for c-Myb in T-cell development. Genes Dev. 1994;8:770–782.

    Article  CAS  PubMed  Google Scholar 

  38. Miyamoto T, Iwasaki H, Reizis B, et al. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev Cell. 2002;3:137–147.

    Article  PubMed  CAS  Google Scholar 

  39. van den Elsen P, Bruns G, Gerhard DS, et al. Assignment of the gene coding for the T3-delta subunit of the T3-T-cell receptor complex to the long arm of human chromosome 11 and to mouse chromosome 9. Proc Natl Acad Sci U S A. 1985;82:2920–2924.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sakaguchi N, Melchers F. Lambda 5, a new light-chain-related locus selectively expressed in pre-B lymphocytes. Nature. 1986;324:579–582.

    Article  PubMed  CAS  Google Scholar 

  41. Karasuyama H, Rolink A, Shinkai Y, Young F, Alt FW, Melchers F. The expression of Vpre-B/lambda 5 surrogate light chain in early bone marrow precursor B cells of normal and B cell-deficient mutant mice. Cell. 1994;77:133–143.

    Article  PubMed  CAS  Google Scholar 

  42. Faust N, Varas F, Kelly LM, Heck S, Graf T. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood. 2000;96:719–726.

    PubMed  CAS  Google Scholar 

  43. Ye M, Iwasaki H, Laiosa CV, et al. Hematopoietic stem cells expressing the myeloid lysozyme gene retain long-term, multilin- eage repopulation potential. Immunity 2003;19:689–699.

    Article  PubMed  CAS  Google Scholar 

  44. Gounari F, Aifantis I, Martin C, et al. Tracing lymphopoiesis with the aid of a pTalpha-controlled reporter gene. Nat Immunol. 2002; 3:489–496.

    Article  PubMed  CAS  Google Scholar 

  45. Iwasaki H, Mizuno S, Wells RA, Cantor AB, Watanabe S, Akashi K. GATA-1 converts lymphoid and myelomonocytic progenitors into the megakaryocyte/erythrocyte lineages. Immunity. 2003;19:451–462.

    Article  PubMed  CAS  Google Scholar 

  46. Nerlov C, Graf T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev. 1998;12:2403–2412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zhang P, Behre G, Pan J, et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc Natl Acad Sci U S A. 1999;96:8705–8710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zhang P, Zhang X, Iwama A, et al. PU.l inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood. 2000;96:2641–2648.

    PubMed  CAS  Google Scholar 

  49. Kulessa H, Frampton J, Graf T. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes Dev. 1995;9:1250–1262.

    Article  CAS  PubMed  Google Scholar 

  50. DeKoter RP, Singh H. Regulation of B lymphocyte and macrophage development by graded expression of PU.l. Science. 2000; 288:1439–1441.

    Article  PubMed  CAS  Google Scholar 

  51. Rothenberg EV, Dionne CJ. Lineage plasticity and commitment in T-cell development. Immunol Rev. 2002;187:96–115.

    Article  PubMed  CAS  Google Scholar 

  52. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell. 2004; 116:639–648.

    Article  PubMed  CAS  Google Scholar 

  53. Kondo M, Scherer DC, Miyamoto T, et al. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature. 2000;407:383–386.

    Article  PubMed  CAS  Google Scholar 

  54. King AG, Kondo M, Scherer DC, Weissman IL. Lineage infidelity in myeloid cells with TCR gene rearrangement: a latent developmental potential of proT cells revealed by ectopic cytokine receptor signaling. Proc Natl Acad Sci U S A. 2002;99:4508–4513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Iwasaki-Arai J, Iwasaki H, Miyamoto T, Watanabe S, Akashi K. Enforced granulocyte/macrophage colony-stimulating factor signals do not support lymphopoiesis, but instruct lymphoid to myelomonocytic lineage conversion. J Exp Med. 2003;197:1311–1322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Miyamoto.

About this article

Cite this article

Miyamoto, T., Akashi, K. Lineage Promiscuous Expression of Transcription Factors in Normal Hematopoiesis. Int J Hematol 81, 361–367 (2005). https://doi.org/10.1532/IJH97.05003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.05003

Key words

Navigation