Skip to main content
Log in

Genesis of Hematopoietic Stem Cells In Vitro and In Vivo: New Insights into Developmental Maturation

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Hematopoietic stem cells first arise in the mammalian embryo in a primitive state, not capable of reconstituting hematopoiesis in irradiated adult recipients. As development proceeds, these cells eventually mature to acquire definitive, adult characteristics, including adult reconstitution ability. Mouse embryonic stem cells induced to undergo hematopoiesis in vitro readily generate primitive hematopoietic stem cells but rarely generate the definitive type. Recent work has stimulated a new appreciation of the events involved in the developmental maturation of hematopoietic stem cells. Application of this knowledge to in vitro differentiation systems will be critical to the successful development of hematopoietic therapies from embryonic stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–1147.

    Article  PubMed  CAS  Google Scholar 

  2. Hwang WS, Ryu YJ, Park JH, et al. Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science. 2004;303:1669–1674.

    Article  PubMed  CAS  Google Scholar 

  3. Beatty PG, Boucher KM, Mori M, Milford EL. Probability of finding HLA-mismatched related or unrelated marrow or cord blood donors. Hum Immunol. 2000;61:834–840.

    Article  PubMed  CAS  Google Scholar 

  4. Barker JN, Weisdorf DJ, DeFor TE, Blazar BR, Miller JS, Wagner JE. Rapid and complete donor chimerism in adult recipients of unrelated donor umbilical cord blood transplantation after reduced-intensity conditioning. Blood. 2003;102:1915–1919.

    Article  PubMed  CAS  Google Scholar 

  5. Wagner JE, Rosenthal J, Sweetman R, et al. Successful transplantation of HLA-matched and HLA-mismatched umbilical cord blood from unrelated donors: analysis of engraftment and acute graft-versus-host disease. Blood. 1996;88:795–802.

    CAS  PubMed  Google Scholar 

  6. Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature. 1953;172:603–606.

    Article  CAS  PubMed  Google Scholar 

  7. Ildstad ST, Sachs DH. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature. 1984;307:168–170.

    Article  PubMed  CAS  Google Scholar 

  8. Fairchild PJ, Cartland S, Nolan KF, Waldmann H. Embryonic stem cells and the challenge of transplantation tolerance. Trends Immunol. 2004;25:465–470.

    Article  PubMed  CAS  Google Scholar 

  9. Shizuru JA, Weissman IL, Kernoff R, Masek M, Scheffold YC. Purified hematopoietic stem cell grafts induce tolerance to alloantigens and can mediate positive and negative T cell selection. Proc Natl Acad Sci USA. 2000;97:9555–9560.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol. 1985;87:27–45.

    PubMed  CAS  Google Scholar 

  11. Coucouvanis E, Martin GR. Signals for death and survival: a two- step mechanism for cavitation in the vertebrate embryo. Cell. 1995; 83:279–287.

    Article  PubMed  CAS  Google Scholar 

  12. Coucouvanis E, Martin GR. BMP signaling plays a role in visceral endoderm differentiation and cavitation in the early mouse embryo. Development. 1999;126:535–546.

    PubMed  CAS  Google Scholar 

  13. Hole N, Graham GJ, Menzel U, Ansell JD. A limited temporal window for the derivation of multilineage repopulating hematopoietic progenitors during embryonal stem cell differentiation in vitro. Blood. 1996;88:1266–1276.

    PubMed  CAS  Google Scholar 

  14. Potocnik AJ, Kohler H, Eichmann K. Hemato-lymphoid in vivo reconstitution potential of subpopulations derived from in vitro differentiated embryonic stem cells. Proc Natl Acad Sci USA. 1997;94:10295–10300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Muller AM, Dzierzak EA. ES cells have only a limited lymphopoietic potential after adoptive transfer into mouse recipients. Development. 1993;118:1343–1351.

    PubMed  CAS  Google Scholar 

  16. Haar JL, Ackerman GA. A phase and electron microscopic study of vasculogenesis and erythropoiesis in the yolk sac of the mouse. Anat Rec. 1971;170:199–223.

    Article  PubMed  CAS  Google Scholar 

  17. Kumaravelu P, Hook L, Morrison AM, et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development. 2002;129:4891–4899.

    PubMed  CAS  Google Scholar 

  18. Cumano A, Dieterlen-Lièvre F, Godin I. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell. 1996;86:907–916.

    Article  PubMed  CAS  Google Scholar 

  19. Garcia-Porrero JA, Godin IE, Dieterlen-Lièvre F. Potential intraembryonic hemogenic sites at pre-liver stages in the mouse. Anat Embryol. 1995;192:425–435.

    Article  CAS  Google Scholar 

  20. Palis J, Robertson S, Kennedy M, Wall C, Keller G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development. 1999;126:5073–5084.

    PubMed  CAS  Google Scholar 

  21. Cumano A, Ferraz JC, Klaine M, Santo JP, Godin I. Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity. 2001;15:477–485.

    Article  PubMed  CAS  Google Scholar 

  22. Yoder MC, Hiatt K, Mukherjee P. In vivo repopulating hematopoietic stem cells are present in the murine yolk sac at day 9.0 post- coitus. Proc Natl Acad Sci USA. 1997;94:6776–6780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yoder MC, Hiatt K, Dutt P, Mukherjee P, Bodine DM, Orlic D. Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity. 1997;7:335–344.

    Article  PubMed  CAS  Google Scholar 

  24. Weissman I, Papaioannou V, Gardner R. Fetal hematopoietic origins of the adult hematolymphoid system. In: Clarkson B, Marks PA, Till JE, eds. Differentiation of Normal and Neoplastic Hematopoietic Cells. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1978: 33–47.

    Google Scholar 

  25. Christensen JL, Wright DE, Wagers AJ, Weissman IL. Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biol. 2004;2:E75.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Morrison SJ, Hemmati HD, Wandycz AM, Weissman IL. The purification and characterization of fetal liver hematopoietic stem cells. Proc Natl Acad Sci USA. 1995;92:10302–10306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Naik UP, Parise LV. Structure and function of platelet alpha IIb beta 3. Curr Opin Hematol. 1997;4:317–322.

    Article  PubMed  CAS  Google Scholar 

  28. Berridge MV, Ralph SJ, Tan AS. Cell-lineage antigens of the stem cell-megakaryocyte-platelet lineage are associated with the platelet IIb-IIIa glycoprotein complex. Blood. 1985;66:76–85.

    PubMed  CAS  Google Scholar 

  29. Tropel P, Roullot V, Vernet M, et al. A 2.7-kb portion of the 5′ flanking region of the murine glycoprotein alphaIIb gene is transcriptionally active in primitive hematopoietic progenitor cells. Blood. 1997;90:2995–3004.

    PubMed  CAS  Google Scholar 

  30. Ody C, Vaigot P, Quere P, Imhof BA, Corbel C. Glycoprotein IIb- IIIa is expressed on avian multilineage hematopoietic progenitor cells. Blood. 1999;93:2898–2906.

    PubMed  CAS  Google Scholar 

  31. Corbel C, Salaun J. AlphaIIb integrin expression during development of the murine hemopoietic system. Dev Biol. 2002;243:301–311.

    Article  PubMed  CAS  Google Scholar 

  32. Mitjavila-Garcia MT, Cailleret M, Godin I, et al. Expression of CD41 on hematopoietic progenitors derived from embryonic hematopoietic cells. Development. 2002;129:2003–2013.

    PubMed  CAS  Google Scholar 

  33. Mikkola HK, Fujiwara Y, Schlaeger TM, Traver D, Orkin SH. Expression of CD41 marks the initiation of definitive hematopoiesis in the mouse embryo. Blood. 2003;101:508–516.

    Article  PubMed  CAS  Google Scholar 

  34. Ferkowicz MJ, Starr M, Xie X, et al. CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo. Blood. 2003;101:508–516.

    Article  CAS  Google Scholar 

  35. Emambokus NR, Frampton J. The glycoprotein IIb molecule is expressed on early murine hematopoietic progenitors and regulates their numbers in sites of hematopoiesis. Immunity. 2003;19:33–45.

    Article  PubMed  CAS  Google Scholar 

  36. Kyba M, Daley GQ. Hematopoiesis from embryonic stem cells: lessons from and for ontogeny. Exp Hematol. 2003;31:994–1006.

    Article  PubMed  CAS  Google Scholar 

  37. Sequeira Lopez ML, Chernavvsky DR, Nomasa T, Wall L, Yanagisawa M, Gomez RA. The embryo makes red blood cell progenitors in every tissue simultaneously with blood vessel morphogenesis. Am J Physiol Regul Integr Comp Physiol. 2003;284:R1126-R1137.

    Article  Google Scholar 

  38. Caprioli A, Jaffredo T, Gautier R, Dubourg C, Dieterlen-Lièvre F. Blood-borne seeding by hematopoietic and endothelial precursors from the allantois. Proc Natl Acad Sci USA. 1998;95:1641–1646.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Alvarez-Silva M, Belo-Diabangouaya P, Salaun J, Dieterlen-Lièvre F. Mouse placenta is a major hematopoietic organ. Development 2003;130:5437–5444.

    Article  PubMed  CAS  Google Scholar 

  40. Mikkola HK, Gekas C, Dieterlen-Lièvre F, Orkin SH. Placenta is a niche for hematopoietic stem cells. Blood. 2004;104:730a.

    Google Scholar 

  41. Kyba M, Perlingeiro RC, Daley GQ. HoxB4 confers definitive lymphoid- myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell. 2002;109:29–37.

    Article  PubMed  CAS  Google Scholar 

  42. Pilat S, Carotta S, Schiedlmeier B, et al. HOXB4 enforces equivalent fates of ES-cell-derived and adult hematopoietic cells. Blood. 2004;104:144a.

    Google Scholar 

  43. Kyba M, Perlingeiro RC, Hoover RR, Lu CW, Pierce J, Daley GQ. Enhanced hematopoietic differentiation of embryonic stem cells conditionally expressing Stat5. Proc Natl Acad Sci USA. 2003;100(suppl 1):11904–11910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Iacovino M, Osawa M, Kyba M. HoxAlO dramatically alters the immunophenotype of early hematopoietic progenitors derived in vitro from ES cells. Blood. 2004;104:881a.

    Article  CAS  Google Scholar 

  45. Davidson AJ, Ernst P, Wang Y, et al. Cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature. 2003;425:300–306.

    Article  PubMed  CAS  Google Scholar 

  46. Wang Y, Yates F, Dikovskaia E, et al. Derivation of hematopoietic stem cells from embryonic stem cells. Blood. 2004;104:68a.

    Google Scholar 

  47. Davidson AJ, Wang Y, Daley GQ, Zon LI. Inhibition of retinoic acid signaling by the cdx-hox pathway is essential for blood cell formation during embryogenesis. Blood. 2004;104:42a.

    Article  Google Scholar 

  48. Kim JY, Sawada A, Tokimasa S, et al. Defective long-term repopulating ability in hematopoietic stem cells lacking the Polycomb- group gene rae28. Eur J Haematol. 2004;73:75–84.

    Article  PubMed  CAS  Google Scholar 

  49. Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423:302–305.

    Article  PubMed  CAS  Google Scholar 

  50. Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003;423:255–260.

    Article  PubMed  CAS  Google Scholar 

  51. Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci USA. 2001;98:10716–10721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kaufman DS, Woll PS, Martin CH, Linehan JL, Tian X. CD34+ cells derived from human embryonic stem cells demonstrate hematopoietic stem cell potential in vitro and in vivo. Blood. 2004;104:163a.

    Google Scholar 

  53. Narayan AD, Chase JL, Ersek A, et al. Human embryonic stem cell (hESC)-derived hematopoietic elements are capable of engrafting primary as well as secondary fetal sheep recipients. Blood. 2004;104:733a.

    Google Scholar 

  54. Thomson JA, Kalishman J, Golos TG, et al. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA. 1995;92:7844–7848.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Thomson JA, Kalishman J, Golos TG, Durning M, Hearn JP. Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol Reprod. 1996;55:254–259..

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kyba.

About this article

Cite this article

Kyba, M. Genesis of Hematopoietic Stem Cells In Vitro and In Vivo: New Insights into Developmental Maturation. Int J Hematol 81, 275–280 (2005). https://doi.org/10.1532/IJH97.04192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.04192

Key words

Navigation