Advertisement

International Journal of Hematology

, Volume 82, Issue 1, pp 21–27 | Cite as

NUP98 Fusion in Human Leukemia: Dysregulation of the Nuclear Pore and Homeodomain Proteins

Progress in Hematology

Abstract

NUP98 is fused to a variety of partner genes, including abdominal B-likeHOX, in human myeloid and T-cell malignancies via chromosomal translocation involving 11p15.NUP98 encodes a 98-kd nucleoporin that is a component of the nuclear pore complex and functions in nucleocytoplasmic transport, with its N-terminal GLFG repeats used as a docking site for karyopherins. Disruption of NUP98 may affect the nuclear pore function, and the abnormal expression and altered function of fusion partners may also be critical for leukemia development. Recent studies using mouse models expressingNUP98-HOX have confirmed its leukemogenic potential, and cooperative genes forNUP98-HOXA9 in leukemogenesis have been identified in these studies. Thus, the NUP98 chimera is a unique molecule that provides valuable information regarding nuclear pore function and the role of the homeobox protein in leukemogenesis/carcinogenesis.

Key words

NUP98 HOX Nucleoporin Nuclear pore complex Cooperative gene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Radu A, Moore MS, Brobel G. The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex.Cell. 1995;81:677–690.CrossRefGoogle Scholar
  2. 2.
    Powers MA, Macaulay C, Masiarz FR, Forbes DJ. Reconstituted nuclei depleted of a vertebrate GLFG nuclear pore protein, p97, import but are defective in nuclear growth and replication.J. Biol Chem. 1995;128:721–736.Google Scholar
  3. 3.
    Nakamura T, Largaespada DA, Lee MP, et al. Fusion of the nucleoporin geneNUP98 toHOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia.Nat Genet. 1996;12:154–1588.CrossRefPubMedGoogle Scholar
  4. 4.
    Borrow J, Shearman AM, Stanton VP, et al. The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9.Nat Genet. 1996;12:159–167.CrossRefPubMedGoogle Scholar
  5. 5.
    Arai Y, Hosoda F, Kobayashi H, et al. The inv(11)(p15q22) chromosome translocation of de novo and therapy-related myeloid malignancies results in fusion of the nucleoporin gene,NUP98, with the putative RNA helicase gene,DDX10.Blood. 1997;89:3936–39444.PubMedGoogle Scholar
  6. 6.
    Raza-Egilmez SZ, Jani-Sait SN, Grossi M, Higgins MJ, Shows TB, Apian PD. NUP98-HOXD13 gene fusion in therapy-related acute myelogenous leukemia.Cancer Res. 1998;58:4269–4273.PubMedGoogle Scholar
  7. 7.
    Nakamura T, Yamazaki Y, Hatano Y, Miura I.NUP98 is fused toPMX1 homeobox gene in human acute myelogenous leukemia with chromosome translocation t(1;11)(q23;p15).Blood. 1999;94:741–7477.PubMedGoogle Scholar
  8. 8.
    Hussey DJ, Nicola M, Moore S, Peters GB, Dobrovic A. The (4;11) (q21;p15) translocation fuses theNUP98 andRAP1GDS genes and is recurrent in T-cell acute lymphocytic leukemia.Blood. 1999;94:2072–2079.PubMedGoogle Scholar
  9. 9.
    Ahuja HG, Felic CA, Apian PD. The t(11;20)(p15;q15) chromosomal translocation associated with therapy-related myelodysplastic syndrome results in anNUP98-TOP1 fusion.Blood. 1999;94:3258–32611.PubMedGoogle Scholar
  10. 10.
    Jaju RJ, Fidler C, Haas OA, et al. A novel gene,NSD1, is fused toNUP98 in the t(5;11)(q35;p15) in de novo childhood acute myeloid leukemia.Blood. 2001;98:1264–1267.CrossRefGoogle Scholar
  11. 11.
    Taketani T, Taki T, Shibuya N, et al. TheHOXD11 gene is fused to theNUP98 gene in acute myeloid leukemia with t(2;11)(q31;p15).Cancer Res. 2002;62:33–37.PubMedPubMedCentralGoogle Scholar
  12. 11.
    Taketani T, Taki T, Shibuya N, et al. Novel NUP98-HOXC11 fusion gene resulted from a chromosomal break within exon 1 of HOXC11 in acute myeloid leukemia with t(11;12)(p15;q13).Cancer Res. 2002;62:4571–4574.PubMedGoogle Scholar
  13. 13.
    Ahuja HG, Hong J, Apian PD, et al. t(9;11)(p22;p15) in acute myeloid leukemia results in a fusion betweenNUP98 and the gene encoding transcriptional coactivators p52 and p75-lens epithelium- derived growth factor (LEDGF).Cancer Res. 2000;60:6227–6229.PubMedGoogle Scholar
  14. 14.
    Fujino T, Suzuki A, Ito Y, et al. Single-translocation and double- chimeric transcripts: detection ofNUP98-HOXA9 in myeloid leukemias withHOXA11 orHOXA13 breaks of the chromosomal translocation t(7;11)(p15;p15).Blood. 2002;99:1428–1433.CrossRefPubMedGoogle Scholar
  15. 15.
    Rosati R, La Starza R, Veronese A, et al.NUP98 is fused to theNSD3 gene in acute myeloid leukemia associated with t(8;11)(p11.2;p15).Blood. 2002;99:3857–3860.CrossRefPubMedGoogle Scholar
  16. 16.
    Panagopoulos I, Isaksson M, Billstrom R, Strombeck B, Mitelman F, Johansson B. Fusion of theNUP98 gene and the homeobox geneHOXC13 in acute myeloid leukemia with t(11;12)(p15;q13).Genes Chromosomes Cancer. 2003;36:107–112.CrossRefPubMedGoogle Scholar
  17. 17.
    Lahortiga I, Vizmanos JL, Agirre X, et al.NUP98 is fused toAdducin 3 in a patient with T-cell acute lymphoblastic leukemia and myeloid markers, with a new translocation t(10;11)(q25;p15).Cancer Res. 2003;63:3079–3083.PubMedGoogle Scholar
  18. 18.
    Nakielny S, Dreyfuss G. Transport of proteins and RNAs in and out of the nucleus.Cell. 1999;99:677–690.CrossRefPubMedGoogle Scholar
  19. 19.
    Rout MP, Wente SR. Pores for thought: nuclear pore complex proteins.Trends Genet. 1994;4:357–365.Google Scholar
  20. 20.
    Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chai BT. The yeast nuclear pore complex: composition, architecture, and transport mechanism.J. Cell Biol. 2000;148:635–651.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ. Proteomic analysis of the mammalian nuclear pore complex.J. Cell Biol. 2002;158:915–927.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Rosenblum JS, Blobel G. Autoproteolysis in nucleoporin biogenesis.Proc Natl Acad Sci USA. 1999;96:11370–11375.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fontoura BM, Blobel G, Matunis MX. A conserved biogenesis pathway for nucleoporins: proteolytic processing of a 186-kilodalton precursor generates Nup98 and the novel nucleoporin Nup96.J. Cell Biol. 1999;144:1097–1112.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Griffls ER, Xu S, Powers MA. Nup98 localizes to both nuclear and cytoplasmic sides of the nuclear pore and binds to two distinct nucleoporin subcomplexes.Mol Biol Cell. 2003;14:600–610.CrossRefGoogle Scholar
  25. 25.
    Fornerod M, van DeursenJ, van Baal S, et al. The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/ Nup214 and a novel nuclear pore component Nup88.EMBO J. 1997;16:807–816.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Neville M, Stutz F, Lee L, Davis LI, Rosbash M. The importin-beta family member Crmlp bridges the interaction between Rev and the nuclear pore complex during nuclear export.Curr Biol. 1997;7:767–7755.CrossRefPubMedGoogle Scholar
  27. 27.
    Pritchard CE, Fornerod M, Kasper KH, van Deursen JM. RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains.J. Cell Biol. 1999;145:237–254.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Blevins MB, Smith AM, Phillips EM, Powers MA. Complex formation among the RNA export proteins Nup98, Rael/Gle2 and TAP.J. Biol Chem. 2003;278:20979–20988.CrossRefPubMedGoogle Scholar
  29. 29.
    Dasso M. Running on Ran: nuclear transport and the mitotic spindle.Cell. 2001;104:321–324.CrossRefPubMedGoogle Scholar
  30. 30.
    Stoffler D, Goldie KN, Feja B, Aebi U. Calcium-mediated structural changes of nuclear pore complexes monitored by time-lapse atomic force microscopy.J. Mol Biol. 1999;287:741–752.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Griffls ER, Altan N, Lippincott-Schwartz J, Powers MA. Nup98 is a mobile nucleoporin with transcription-dependent dynamics.Mol Biol Cell. 2002;13:1282–1297.CrossRefGoogle Scholar
  32. 32.
    Zolotukhin AS, Felber BK. Nucleoporins Nup98 and Nup214 participate in nuclear export of human immunodeficiency virus type 1 Rev.J. Virol. 1999;73:120–127.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Wu X, Kasper LH, Mantcheva RT, Matchev GT, Springett MJ, van DeursenJM. Disruption of the FG nucleoporin NUP98 causes selective changes in nuclear pore complex stoichiometry and function.Proc Natl Acad Sci USA. 2001;98:3191–3196.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    von LindernM, Fornerod M, van Baal S, et al. The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA.Mol Cell Biol. 1992;12:1687–1697.CrossRefGoogle Scholar
  35. 35.
    Kau TR, Way JC, Silver PA. Nuclear transport and cancer: from mechanism to intervention.Nat Rev Cancer. 2004;4:106–117.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van DeursenJM. CREB binding protein interacts with nucleo- porin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity.Mol Cell Biol. 1999;19:764–776.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ghannam G,Takeda A, CamarataT, Moore MA, Viale A, Yaseen NR. The oncogeneNup98-HOXA9 induces gene transcription in myeloid cells.J. Biol Chem. 2004;279:866–875.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hussey DJ, Dobrovic A. Recurrent coiled-coil motifs in NUP98 fusion partners provide a clue to leukemogenesis.Blood. 2002;99:1097–10988.CrossRefGoogle Scholar
  39. 39.
    Fontoura BMA, Dales S, Blobel G, Zhong H. The nucleoporin Nup98 associates with the intranuclear filamentous protein network of TPR.Proc Natl Acad Sci USA. 2001;98:3208–3213.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Krull S, Thyberg J, Bjorkroth B, Rackwitz HR, Cordes VC. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket.Mol Biol Cell. 2004;15:4261–4277.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Frosst P, Guan T, Subauste C, Hahn K, Gerace L. Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export.J. Cell Biol. 2002;156:617–630.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Askjaer P, Bachi A, Wilm M, et al. RanGTP-regulated interactions of CRM1 with nucleoporins and a shuttling DEAD-box helicase.Mol Cell Biol. 2002;156:617–630.Google Scholar
  43. 43.
    Manak JR, Scott MP. A class act: conservation of homeodomain protein functions.Development. 1994;120(suppl):61–71.Google Scholar
  44. 44.
    Kehrl JH. Homeobox genes in hematopoiesis.Crit Rev Oncol Hematol. 1994;16:145–156.CrossRefPubMedGoogle Scholar
  45. 45.
    Lawrence HJ, Sauvageau G, Humphries RK, Largman C. The role of HOX homeobox genes in normal and leukemic hematopoiesis.Stem Cells. 1996;14:281–291.CrossRefPubMedGoogle Scholar
  46. 46.
    Sauvageau G, Lansdorp PM, Eaves CJ, et al. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells.Proc Natl Acad Sci USA. 1994; 91:12223–12227.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Thorsteinsdottir U, Sauvageau G, Hogh MR, et al. Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia.Mol Cell Biol. 1997;17:495–505.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Buske C, Feuring-Buske M, Antonchuk J, et al. Overexpression ofHOXA10 perturbs human lymphomyelopoiesis in vitro and in vivo.Blood. 2001;97:2286–2292.CrossRefPubMedGoogle Scholar
  49. 49.
    Care A, Valtieri M, Mattia G, et al. Enforced expression of HOXB7 promotes hematopoietic stem cell proliferation and myeloid- restricted progenitor differentiation.Oncogene. 1999;18:1993–2001.CrossRefPubMedGoogle Scholar
  50. 50.
    Fujino T, Yamazaki Y, Largaespada DA, et al. Inhibition of myeloid differentiation by Hoxa9, Hoxb8, and Meis homeobox genes.Exp Hematol. 2001;29:856–863.CrossRefPubMedGoogle Scholar
  51. 51.
    Krishnaraju K, Hoffman B, Liebermann DA. Lineage-specific regulation of hematopoiesis by HOX-B8 (HOX-2.4): inhibition of granulocytic differentiation and potentiation of monocytic differentiation.Blood. 1997;90:1840–1849.PubMedGoogle Scholar
  52. 52.
    Antonchuk J, Sauvageau R, Humphries RK. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo.Cell. 2002;109:39–45.CrossRefPubMedGoogle Scholar
  53. 53.
    Kyba M, Perlingeiro RCR, Daley GQ. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors.Cell. 2002;109:29–37.CrossRefPubMedGoogle Scholar
  54. 54.
    Stein S, Fritsch R, Lemnaire L, Kessel M. Checklist: vertebrate homeobox genes.Mech Dev. 1996;55:91–108.CrossRefPubMedGoogle Scholar
  55. 55.
    Lawrence HJ, Helgason CD, Sauvageau G, et al. Mice bearing a targeted interruption of the homeobox geneHOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis.Blood. 1997;89:1922–19300.PubMedGoogle Scholar
  56. 56.
    Thompson AA, Nguyen LT. A megakaryocytic thrombocytopenia and radio-ulnar synostosis are associated withHOXA11 mutation.Nat Genet. 2000;26:397–399.CrossRefPubMedGoogle Scholar
  57. 57.
    Greaves MF, Wiemels J. Origins of chromosome translocation in childhood leukaemia.Nat Rev Cancer. 2003;3:1–11.CrossRefGoogle Scholar
  58. 58.
    Kroon E, Thorsteinsdottir U, Mayotte N, Nakamura T, Sauvageau G. NUP98-HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice.EMBO J. 2001;20:350–3611.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G.Hoxa9 transforms primary bone marrow cells through specific collaboration withMeis1a but notPbx1b.EMBO J. 1998;17:3714–37255.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Pineault N, Buske C, Feuring-Buske M, et al. Induction of acute myeloid leukemia in mice by the human leukemia-specific fusion geneNUP98-HOXD13 in concert withMeisl.Blood. 2003;101:4529–4538.CrossRefPubMedGoogle Scholar
  61. 61.
    Pineault N, Abramovich C, Ohta H, Humphries RK. Differential and common leukemogenic potentials of multiple NUP98-Hox fusion proteins alone or with Meisl.Mol Cell Biol. 2004;24:1907–1917.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Gurevich RM, Aplan PD, Humphries RK.NUP98-Topoisomerase I acute myeloid leukemia-associated fusion gene has potent leukemogenic activities independent of an engineered catalytic site mutation.Blood. 2004;104:1127–1136.CrossRefPubMedGoogle Scholar
  63. 63.
    Iwasaki M, Kuwata T, Yamazaki Y, et al. Identification of cooperative genes forNUP98-HOXA9 in myeloid leukemogenesis using a mouse model.Blood. 2004;104:1127–1136.CrossRefGoogle Scholar
  64. 64.
    Grisolano JL, Sclar GM, Ley TJ. Early myeloid cell-specific expression of the human cathepsin G gene in transgenic mice.Proc Natl Acad Sci USA. 1994;91:8989–8993.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ. Altered myeloid development and acute leukemia in transgenic mice expressing PML-RARa under control of cathepsin G regulatory sequences.Blood. 1997;89:376–387.PubMedGoogle Scholar
  66. 66.
    Jenkins NA, Copeland NG, Taylor BA, Bedigian HG, Lee BK. Ecotropic murine leukemia virus DNA content of normal and lym- phomatous tissues of BXH-2 recombinant inbred mice.J. Virol. 1982;42:379–388.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Copeland NG, Jenkins NA. Myeloid leukemia: disease genes and mouse models. In: Hiai H, Hino O, eds.Animal Models of Cancer Predisposition Syndromes. Basel, Switzerland: Karger; 1999:53–63.CrossRefGoogle Scholar
  68. 68.
    Mikkers H, Berns A. Retroviral insertional mutagenesis: tagging cancer pathways.Adv Cancer Res. 2003;88:53–99.PubMedGoogle Scholar
  69. 69.
    Li J, Shen H, Himmel KL, et al. Leukaemia disease gene: large- scale cloning and pathway predictions.Nat Genet. 1999;23:348–353.CrossRefPubMedGoogle Scholar
  70. 70.
    Suzuki T, Shen H, Akagi K, et al. New genes involved in cancer identified by retroviral tagging.Nat Genet. 2002;32:166–174.CrossRefGoogle Scholar
  71. 71.
    Milisav I. Dynein and dynein-related genes.Cell Motil Cytoskeleton. 1998;39:261–272.CrossRefGoogle Scholar
  72. 72.
    Puthalakath H, Huang DC, O’Reilly LA, King SM, Strasser A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex.Mol Cell. 1999;3:287–2966.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Vadlamudi RK, Bagheri-Yarmand R, Yang Z, et al. Dynein light chain 1, a p21-activated kinase 1-interacting substrate, promotes cancerous phenotypes.Cancer Cell. 2004;5:575–585.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Dash AB, Williams IR, Kutok JL, et al. A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9.Proc NatlAcad Sci USA. 2002;99:7622–7627.CrossRefGoogle Scholar
  75. 75.
    Mayotte N, Roy D-C, Yao J, Kroon E, Sauvageau G. Oncogenic interaction betweenBCR-ABL andNUP98-HOXA9 demonstrated by the use of an in vitro purging culture system.Blood. 2002;100:4177–4184.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Yamamoto K, Nakamura Y, Saito K, Furusawa S. Expression of theNUP98/HOXA9 fusion transcript in the blast crisis of Philadelphia chromosome-positive chronic myelogenous leukaemia with t(7;11) (p15;p15).Br J Haematol. 2000;109:423–426.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Ahuja HG, Popplewell L, Tcheurekdijian L, Slovak ML.NUP98 gene rearrangements and the clonal evolution of chronic myelogenous leukemia.Genes Chromosomes Cancer. 2001;30:410–415.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Look AT. Oncogenic transcription factors in the human acute leukemias.Science. 1997;278:1059–1064.CrossRefPubMedGoogle Scholar
  79. 79.
    Graux C, Cools J, Melotte C, et al. Fusion ofNUP214 toABL1 on amplified episomes in T-cell acute lymphoblastic leukemia.Nat ience. 1997;278:1059–1064.Google Scholar

Copyright information

© The Japanese Society of Hematology 2005

Authors and Affiliations

  1. 1.Department of Carcinogenesis, The Cancer InstituteJapanese Foundation for Cancer ResearchTokyoJapan

Personalised recommendations