Skip to main content
Log in

Potential Role of Natural Killer Cell Receptor-Expressing Cells in Immunotherapy for Leukemia

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Natural killer cell receptor (NKR)-expressing cells have cytolytic activity against leukemic cells, and solid tumor cells escape from T-cell recognition because of the low expression levels of class I HLA molecules in both allogeneic and autologous settings. This characteristic feature of NK cell recognition of target cells in contrast with that of T-cells provides a strategy to overcome tolerance in the tumor-bearing host. Furthermore, inhibitory NKR-expressing cells may have cytolytic activity and immunoregulatory functions. Several methods can be used to expand NKR-expressing cells for adoptive immunotherapy for leukemia and other malignant diseases.We review recent developments in the biology and clinical application of NKR-expressing cells, such as NK cells, lymphokine-activated killer cells, cytokine-induced killer cells, NKT cells, and other NKR-expressing cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farag SS, VanDeusen JB, Fehniger TA, Caligiuri MA. Biology and clinical impact of human natural killer cells. Int J Hematol. 2003;78:7–17.

    Article  CAS  PubMed  Google Scholar 

  2. Imamura M, Tanaka J. Immunoregulatory cells for transplantation tolerance and graft-versus-leukemia effect. Int J Hematol. 2003;78:188–194.

    Article  CAS  PubMed  Google Scholar 

  3. Voutsadakis IA. NK cells in allogeneic bone marrow transplantation. Cancer Immunol Immunother. 2003;52:525–534.

    Article  PubMed  Google Scholar 

  4. Shibuya A. Development and functions of natural killer cells. Int J Hematol. 2003;78:1–6.

    Article  CAS  PubMed  Google Scholar 

  5. Young NT. Immunobiology of natural killer lymphocytes in transplantation. Transplantation. 2004;78:1–6.

    Article  CAS  PubMed  Google Scholar 

  6. Ljunggren HG, Karre K. In search of the "missing self":MHC molecules and NK cell recognition. Immunol Today. 1990;11:237–244.

    Article  CAS  PubMed  Google Scholar 

  7. Moretta A, Biassoni R, Bottino C, et al. Major histocompatibility complex class I-specific receptors on human natural killer and T lymphocytes. Immunol Rev. 1997;155:105–117.

    Article  CAS  PubMed  Google Scholar 

  8. Bakker ABH, Phillips JH, Figdor CG, Lanier LL. Killer cell inhibitory receptors for MHC class I molecules regulate lysis of melanoma cells mediated by NK cells, γ δ T cells, and antigen-specific CTL. J Immunol. 1998;160:5239–5245.

    CAS  PubMed  Google Scholar 

  9. Phillips JH, Gumperz JE, Parham P, Lanier LL. Superantigendependent, cell-mediated cytotoxicity inhibited by MHC class I receptors on T lymphocytes. Science. 1995;268:403–405.

    Article  CAS  PubMed  Google Scholar 

  10. Mingari MC, Schiavetti F, Ponte M, et al.. Human CD8+ T lymphocyte subsets that express HLA class I-specific inhibitory receptors represent oligoclonally or monoclonally expanded cell populations. Proc Natl Acad Sci U S A. 1996;93:12433–12438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huard B, Karlsson L. KIR expression on self-reactive CD8+ T cells is controlled by T-cell receptor engagement. Nature. 2000;403:325–328.

    Article  CAS  PubMed  Google Scholar 

  12. Mingari MC, Ponte M, Bertone S, et al. HLA class I-specific inhibitory receptors in human T lymphocytes:interleukin 15-induced expression of CD94/NKG2A in superantigen- or alloantigenactivated CD8+ T cells. Proc Natl Acad Sci U S A. 1998;95:1172–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mingari MC, Moretta A, Moretta L. Regulation of KIR expression in human T cells:a safe mechanism that may impair protective T-cell responses. Immunol Today. 1998;19:153–157.

    Article  CAS  PubMed  Google Scholar 

  14. Lowdell MW, Lamb L, Hoyle C, Velardi A, Prentice HG. Non- MHC-restricted cytotoxic cells:their roles in the control and treatment of leukaemias. Br J Haematol. 2001;114:11–24.

    Article  CAS  PubMed  Google Scholar 

  15. Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caliggiuri MA. Nat ural killer cell receptors:new biology and insights into the graftversus- leukemia effect. Blood. 2002;100:1935–1947.

    Article  CAS  PubMed  Google Scholar 

  16. Colonna M, Borsellino G, Falco M, Ferrara GB, Strominger JL. HLA-C is the inhibitory ligand that determines dominant resistance to lysis by NK1- and NK2-specific natural killer cells. Proc Natl Acad Sci U S A. 1993;90:12000–12004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Biassoni R, Cantoni C, Falco M, et al. The human leukocyte antigen (HLA)-C-specific "activatory" or "inhibitory" natural killer cell receptors display highly homologous extracellular domains but differ in their transmembrane and intracytoplasmic portions. J Exp Med. 1996;183:645–650.

    Article  CAS  PubMed  Google Scholar 

  18. Lanier LL. Activating and inhibitory NK cell receptors. Adv Exp Med Biol. 1998;452:13–18.

    Article  CAS  PubMed  Google Scholar 

  19. Ulbrecht M, Honka T, Person S, Johnson JP, Weiss EH. The HLA-E gene encodes two differentially regulated transcripts and a cell surface protein. J Immunol. 1992;149:2945–2953.

    CAS  PubMed  Google Scholar 

  20. Borrego F, Ulbrech M, Weiss EH, Coligan JE, Brooks AG. Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J Exp Med. 1998;187:813–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Braud VM, Allan DSJ, O’Callaghan CA, et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 1998;391:795–799.

    Article  CAS  PubMed  Google Scholar 

  22. Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol. 2003;3:781–790.

    Article  CAS  PubMed  Google Scholar 

  23. Diefenbach A, Jensen ER, Jamieson AM, Raulet DH. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature. 2001;413:165–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu J, Song Y, Bakker AB, et al. An activating immunoreceptor complexformed by NKG2D and DAP10. Science. 1999;285:730–732.

    Article  CAS  PubMed  Google Scholar 

  25. Bahram S. MIC genes:from genetics to biology. Adv Immunol. 2000;76:1–60.

    CAS  PubMed  Google Scholar 

  26. Sutherland CL, Chalupny NJ, Cosman D. The UL16-binding proteins, a novel family of MHC class I-related ligands for NKG2D, activate natural killer cell functions. Immunol Rev. 2001;181:185–792.

    Article  CAS  PubMed  Google Scholar 

  27. Pietra G, Romagnani C, Mazzarino P, et al. HLA-E-restricted recognition of cytomegalovirus-derived peptides by human CD8+ cytolytic T lymphocytes. Proc Natl Acad Sci U S A. 2003;100:10896- 10901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Farag SS, George SL, Lee EJ, et al. Postremission therapy with lowdose interleukin 2 with or without intermediate pulse dose interleukin 2 therapy is well tolerated in elderly patients with acute myeloid leukemia:Cancer and Leukemia Group B Study 9420. Clin Cancer Res. 2002;8:2812–2819.

    CAS  PubMed  Google Scholar 

  29. Pende D, Cantoni C, Rivera P, et al. Role of NKG2D in tumor cell lysis mediated by human NK cells:cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin. Eur J Immunol. 2001;31:1076–1086.

    Article  CAS  PubMed  Google Scholar 

  30. Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T. Costimulation of CD8α β T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol. 2001;2:255–260.

    Article  CAS  PubMed  Google Scholar 

  31. Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science. 1999;285:727–729.

    Article  CAS  PubMed  Google Scholar 

  32. Cosman D, Mullberg J, Sutherland CL, et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity. 2001;14:123–133.

    Article  CAS  PubMed  Google Scholar 

  33. Garrido F, Cabrera T, Lopez-Nevot MA, Ruiz-Cabello F. HLA class I antigens in human tumors. Adv Cancer Res. 1995;67:155–195.

    Article  CAS  PubMed  Google Scholar 

  34. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T-cell recognition:molecular mechanisms and functional significance. Adv Immunol. 2000;74:181–273.

    Article  CAS  PubMed  Google Scholar 

  35. Brouwer RE, van der Heiden P, Schreuder GM, et al. Loss or downregulation of HLA class I expression at the allelic level in acute leukemia is infrequent but functionally relevant, and can be restored by interferon. Hum Immunol. 2002;63:200–210.

    Article  CAS  PubMed  Google Scholar 

  36. Amiot L, Onno M, Lamy T, et al. Loss of HLA molecules in B lymphomas lymphomas is associated with an aggressive clinical course. Br J Haematol. 1998;100:655–663.

    Article  CAS  PubMed  Google Scholar 

  37. Savoia P, D’Alfonso S, Peruccio D, et al. Loss of surface HLA class I molecules in leukemic myeloblasts is correlated with an increased leukocyte concentration at onset. Haematologica. 1992;77:127–129.

    CAS  PubMed  Google Scholar 

  38. Demanet C, Mulder A, Deneys V, et al. Down-regulation of HLA-A and HLA-Bw6, but not HLA-Bw4, allospecificities in leukemic cells:an escape mechanism from CTL and NK attack? Blood. 2004;103:3122–3130.

    Article  CAS  PubMed  Google Scholar 

  39. Albi N, Ruggeri L, Aversa F, et al. Natural killer (NK)-cell function and antileukemic activity of a large population of CD3+/CD8+ T cells expressing NK receptors for major histocompatibility complex class I after "three-loci" HLA-incompatible bone marrow transplantation. Blood. 1996;87:3993–4000.

    CAS  PubMed  Google Scholar 

  40. Ruggeri L, Capanni M, Casucci M, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood. 1999;94:333–339.

    CAS  PubMed  Google Scholar 

  41. Cambiaggi A, Verthuy C, Naquet P, et al. Natural killer cell acceptance of H-2 mismatch bone marrow grafts in transgenic mice expressing HLA-Cw3 specific killer cell inhibitory receptor (CD158b). Proc Natl Acad Sci U S A. 1997;94:8088–8092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cambiaggi A, Darche S, Guia S, Kourilsky P, Abastado JP, Vivier E. Modulation of T-cell functions in KIR2DL3 (CD158b) transgenic mice. Blood. 1999;94:2396–2402.

    CAS  PubMed  Google Scholar 

  43. Petersdorf EW, Longton GM, Anasetti C, et al. Association of HLA-C disparity with graft failure after marrow transplantation from unrelated donors. Blood. 1997;89:1818–1823.

    CAS  PubMed  Google Scholar 

  44. Sasazuki T, Juji T, Morishima Y, et al. Effect of matching of class I HLA alleles on clinical outcome after transplantation of hematopoietic stem cells from an unrelated donor:Japan Marrow Donor Program. N Engl J Med. 1998;339:1177–1185.

    Article  CAS  PubMed  Google Scholar 

  45. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:2097–2100.

    Article  CAS  PubMed  Google Scholar 

  46. Davies SM, Ruggieri L, DeFor T, et al. Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants:killer immunoglobulin-like receptor. Blood. 2002;100:3825–3827.

    Article  CAS  PubMed  Google Scholar 

  47. Giebel S, Locatelli F, Lamparelli T, et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood. 2003;102:814–819.

    Article  CAS  PubMed  Google Scholar 

  48. Leung W, Iyengar R, Turner V, et al. Determinants of antileukemia effects of allogeneic NK cells. J Immunol. 2004;172:644–650.

    Article  CAS  PubMed  Google Scholar 

  49. Cook MA, Milligan DW, Fegan CD, et al. The impact of donor KIR and patient HLA-C genotypes on outcome following HLA-identical sibling hematopoietic stem cell transplantation for myeloid leukemia. Blood. 2004;103:1521–1526.

    Article  CAS  PubMed  Google Scholar 

  50. Igarashi T, Wynberg J, Srinivasan R, et al. Enhanced cytotoxicity of allogeneic NK cells with killer immunoglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells. Blood. 2004;104:170–177.

    Article  CAS  PubMed  Google Scholar 

  51. Tanaka J, Mori A, Ohta S, et al. Expression of HLA-C-specific natural killer cell receptors (CD158a and CD158b) on peripheral blood mononuclear cells after allogeneic bone marrow transplantation. Br J Haematol. 2000;108:778–783.

    Article  CAS  PubMed  Google Scholar 

  52. Tanaka J, Mori A, Ohta S, Kobayashi S, Asaka M, Imamura M. Sequential analysis of HLA-C-specific killer cell inhibitory receptor (CD158b) expressing peripheral blood mononuclear cells during chronic graft-versus-host disease. Bone Marrow Transplant. 2000;26:287–290.

    Article  CAS  PubMed  Google Scholar 

  53. Tanaka J, Tsutsumi Y, Zhang L, et al. Increased expression of HLAclass- I-specific killer cell inhibitory receptors (CD94) on peripheral blood mononuclear cells after allogeneic bone marrow transplantation. Acta Haematol. 2001;105:89–91.

    Article  CAS  PubMed  Google Scholar 

  54. Vitale C, Pitto A, Benvenuto F, et al. Phenotypic and functional analysis of the HLA-class I-specific inhibitory receptors of natural killer cells isolated from peripheral blood of patients undergoing bone marrow transplantation from matched unrelated donors. Hematol J. 2000;1:136–144.

    Article  CAS  PubMed  Google Scholar 

  55. Shilling HG, McQueen KL, Cheng NW, Shizuru JA, Negrin RS, Parham P. Reconstitution of NK cell receptor repertoire following HLA-matched hematopoietic cell transplantation. Blood. 2003; 101:3730–3740.

    Article  CAS  PubMed  Google Scholar 

  56. Malmberg KJ. Effective immunotherapy against cancer:a question of overcoming immune suppression and immune escape? Cancer Immunol Immunother. 2004;53:879–892.

    Article  CAS  PubMed  Google Scholar 

  57. Mapara MY, Sykes M. Tolerance and cancer:mechanisms of tumor evasion and strategies for breaking tolerance. J Clin Oncol. 2004; 22:1136–1151.

    Article  CAS  PubMed  Google Scholar 

  58. Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 1998;4:328–332.

    Article  CAS  PubMed  Google Scholar 

  59. Rosenberg SA. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity. 1999;10:281–287.

    Article  CAS  PubMed  Google Scholar 

  60. Yee C, Thompson JA, Roche P, et al. Melanocyte destruction after antigen-specific immunotherapy of melanoma:direct evidence of T cell-mediated vitiligo. J Exp Med. 2000;192:1637–1644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dudley ME, Wunderlich J, Nishimura MI, et al. Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother. 2001;24:363–273.

    Article  CAS  PubMed  Google Scholar 

  62. Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298:850–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rosenberg SA, Lotze MT, Muul LM, et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokineactivated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med. 1987;316:889–897.

    Article  CAS  PubMed  Google Scholar 

  64. Law TM, Motzer RJ, Mazumdar M, et al. Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma. Cancer. 1995;76:824–832.

    Article  CAS  PubMed  Google Scholar 

  65. Kimura H, Yamaguchi Y. A phase III randomized study of interleukin- 2 lymphokine-activated killer cell immunotherapy combined with chemotherapy or radiotherapy after curative or noncurative resection of primary lung carcinoma. Cancer. 1997;80:42–49.

    Article  CAS  PubMed  Google Scholar 

  66. Meropol NJ, Barresi GM, Fehniger TA, Hitt J, Franklin M, Caligiuri MA. Evaluation of natural killer cell expansion and activation in vivo with daily subcutaneous low-dose interleukin-2 plus periodic intermediate-dose pulsing. Cancer Immunol Immunother. 1998;46:318–326.

    Article  CAS  PubMed  Google Scholar 

  67. Dhanji S, Teh HS. IL-2-activated CD8+CD44high cells express both adaptive and innate immune system receptors and demonstrate specificity for syngeneic tumor cells. J Immunol. 2003;171:3442–3450.

    Article  CAS  PubMed  Google Scholar 

  68. Koh CY, Blazar BR, George T, et al. Augmentation of antitumor effects by NK cell inhibitory receptor blockade in vitro and in vivo. Blood. 2001;97:3132–3127.

    Article  CAS  PubMed  Google Scholar 

  69. Lowdell MW, Craston R, Samuel D, et al. Evidence that continued remission in patients treated for acute leukaemia is dependent upon autologous natural killer cells. Br J Haematol. 2002;117:821–827.

    Article  CAS  PubMed  Google Scholar 

  70. Romagnani C, Pietra G, Falco M, et al. Identification of HLA-Especific alloreactive T lymphocytes:a cell subset that undergoes preferential expansion in mixed lymphocyte culture and displays a broad cytolytic activity against allogeneic cells. Proc Natl Acad Sci U S A. 2002;99:11328–11333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Groh V, Wu J, Yee C, Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature. 2002; 419:734–738.

    Article  CAS  PubMed  Google Scholar 

  72. Salih HR, Antropius H, Gieseke F, et al. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood. 2003;102:1389–1396.

    Article  CAS  PubMed  Google Scholar 

  73. Maccalli C, Pende D, Castelli C, Mingari MC, Robbins PF, Parmiani G. NKG2D engagement of colorectal cancer-specific T cells strengthens TCR-mediated antigen stimulation and elicits TCR independent antitumor activity. Eur J Immunol. 2003;33:2033–2043.

    Article  CAS  PubMed  Google Scholar 

  74. Verneris MR, Karami M, Baker J, Jayaswal A, Negrin RS. Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells. Blood. 2004;103:3065–3072.

    Article  CAS  PubMed  Google Scholar 

  75. Dunne J, Lynch S, O’Farrelly C, et al. Selective expansion and partial activation of human NK cells and NK receptor-positive T cells by IL-2 and IL-15. J Immunol. 2001;167:3129–3138.

    Article  CAS  PubMed  Google Scholar 

  76. Derre L, Corvaisier M, Pandolfino MC, Diez E, Jotereau F, Gervois N. Expression of CD94/NKG2-A on human T lymphocytes is induced by IL-12:implications for adoptive immunotherapy. J Immunol. 2002; 168:4864–4870.

    Article  CAS  PubMed  Google Scholar 

  77. Sivori S, Cantoni C, Parolini S, et al. IL-21 induces both rapid maturation of human CD34+ cell precursors towards NK cells and acquisition of surface killer Ig-like receptors. Eur J Immunol. 2003; 33:3439–3447.

    Article  CAS  PubMed  Google Scholar 

  78. Hoyle C, Bangs CD, Chang P, Kamel O, Mehta B, Negrin RS. Expansion of Philadelphia chromosome-negative CD3+CD56+ cytotoxic cells from chronic myeloid leukemia patients:in vitro and in vivo efficacy in severe combined immunodeficiency disease mice. Blood. 1998;92:3318–3327.

    CAS  PubMed  Google Scholar 

  79. Verneris MR, Baker J, Edinger M, Negrin RS. Studies of ex vivo activated and expanded CD8+ NK-T cells in humans and mice. J Clin Immunol. 2002;22:131–136.

    Article  CAS  PubMed  Google Scholar 

  80. Tanaka J, Toubai T, Tsutsumi Y, et al. Cytolytic activity and regulatory functions of inhibitory NK cell receptor-expressing T cells expanded from granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells. Blood. 2004;104:768–774.

    Article  CAS  PubMed  Google Scholar 

  81. Beresford PJ, Xia Z, Greenberg AH, Lieberman J. Granzyme A loading induces rapid cytolysis and a novel form of DNA damage independently of caspase activation. Immunity. 1999;10:585–594.

    Article  CAS  PubMed  Google Scholar 

  82. Tsutsumi Y, Tanaka J, Sugita J, et al. Analysis of T cell repertoire and mixed chimerism in a patient with aplastic anemia after allogeneic bone marrow transplantation. Br J Haematol. 2002;118:136–139.

    Article  PubMed  Google Scholar 

  83. Wang J, Springer TA. Structural specializations of immunoglobulin superfamily members for adhesion to integrins and viruses. Immunol Rev. 1998;163:197–215.

    Article  CAS  PubMed  Google Scholar 

  84. Meresse B, Chen Z, Ciszewski C, et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity. 2004;21:357–366.

    Article  CAS  PubMed  Google Scholar 

  85. Tanaka J, Tsutsumi Y, Zhang L, et al. Induction of CD94/NKG2A expression on T cells in mixed lymphocyte culture by CD14+ cells from granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells. Br J Haematol. 2002;117:751–754.

    Article  CAS  PubMed  Google Scholar 

  86. Yoshimoto T, Paul WE. CD4pos, NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J Exp Med. 1994;179:1285–1295.

    Article  CAS  PubMed  Google Scholar 

  87. Kawano T, Cui J, Koezuka Y, et al. CD1d-restricted and TCRmediated activation of V_14 NKT cells by glycosylceramides. Science. 1997;278:1626–1629.

    Article  CAS  PubMed  Google Scholar 

  88. Hong S, Wilson MT, Serizawa I, et al. The natural killer T-cell ligand alpha-galactosylceramide prevents autoimmune diabetes in nonobese diabetic mice. Nat Med. 2001;7:1052–1056.

    Article  CAS  PubMed  Google Scholar 

  89. Sharif S, Arreaza GA, Zucker P, et al. Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune type 1 diabetes. Nat Med. 2001;7:1057–1062.

    Article  CAS  PubMed  Google Scholar 

  90. Rigby SM, Rouse T, Field EH. Total lymphoid irradiation nonmyeloablative preconditioning enriches for IL-4-producing CD4+-TNK cells and skews differentiation of immunocompetent donor CD4+ cells. Blood. 2003;101:2024–2032.

    Article  CAS  PubMed  Google Scholar 

  91. Baker J, Verneris MR, Ito M, Shizuru JA, Negrin RS. Expansion of cytolytic CD8+ natural killer T cells with limited capacity for graftversus- host disease induction due to interferon γ production. Blood. 2001;97:2923–2931.

    Article  CAS  PubMed  Google Scholar 

  92. Takahashi T, Haraguchi K, Chiba S, Yasukawa M, Shibata Y, Hirai H. Vα24+ natural killer T-cell responses against T-acute lymphoblastic leukaemia cells:implications for immunotherapy. Br J Haematol. 2003;122:231–239.

    Article  PubMed  Google Scholar 

  93. Haraguchi K, Takahashi T, Hiruma K, et al. Recovery of Vα24+ NKT cells after hematopoietic stem cell transplantation. Bone Marrow Transplant. 2004;34:595–602.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Tanaka.

About this article

Cite this article

Tanaka, J., Asaka, M. & Imamura, M. Potential Role of Natural Killer Cell Receptor-Expressing Cells in Immunotherapy for Leukemia. Int J Hematol 81, 6–12 (2005). https://doi.org/10.1532/IJH97.04152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.04152

Key words

Navigation