Advertisement

International Journal of Hematology

, Volume 80, Issue 4, pp 325–331 | Cite as

Interferon- ζ/Limitin: Novel Type I Interferon That Displays a Narrow Range of Biological Activity

  • Kenji Oritani
  • Yoshiaki Tomiyama
Review Article

Abstract

Interferon ζ (IFN-ζ)/limitin has been regarded as a novel type IIFN by the Nomenclature Committee of the International Society for Interferon and Cytokine Research. IFN-ζ/limitin, which has some sequence homology with IFN-α and IFN-ß, has a globular structure with 5 α helices and 4 loops and recognizes IFN-α/ß receptor. Although it displays antiviral, immunomodulatory, and antitumor effects, IFN-ζ/limitin has much less lymphomyelosuppressive activity than IFN-α. Unique interactions between IFN-ζ/limitin and the receptor probably led to the narrow range of signals and biological activities. A human homologue of IFN-ζ/limitin may be clinically more effective than IFN-α and IFN-ß because it has fewer adverse effects. Moreover, further analysis of the structure-function relationship may establish an engineered cytokine with the useful features of IFN-ζ/ limitin.

Key words

Interferon IFN-ζ Limitin Signal Structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maeyer E, Maeyer-Guignard J. Type I interferon. Int Rev Immunol. 1998;17:53–73.CrossRefPubMedGoogle Scholar
  2. 2.
    Pfeffer LM, Dinarello CA, Herberman RB, et al. Biological properties of recombinant α-interferons: 40th anniversary of the discovery of interferons. Cancer Res. 1998;58:2489–2499.PubMedGoogle Scholar
  3. 3.
    LaFleur DW, Nardelli B, Tsareva T, et al. Interferon-kappa, a novel type I interferon expressed in human keratinocytes. J Biol Chem. 2001;276:39765–39771.CrossRefGoogle Scholar
  4. 4.
    Kotenko SV, Gallagher G, Baurin VV, et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol. 2003;4:69–77.CrossRefPubMedGoogle Scholar
  5. 5.
    Sheppard P, Kindsvogel W, Xu W, et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol. 2003;4:63–68.CrossRefPubMedGoogle Scholar
  6. 6.
    Kincade PW, Medina K, Pietrangeli CE, Hayashi S-I, Naemen AE. Stromal cell lines which support lymphocyte growth II: characteristics of a suppressive subclone. Adv Exp Med Biol. 1991;292:227–234.CrossRefPubMedGoogle Scholar
  7. 7.
    Oritani K, Medina KL, Tomiyama Y, et al. Limitin: an interferon- like cytokine that preferentially influences B-lymphocyte precursors. Nat Med. 2000;6:659–666.CrossRefPubMedGoogle Scholar
  8. 8.
    Kawamoto S, Oritani K, Asada H, et al. Antiviral activity of limitin against encephalomyocarditis virus, herpes simplex virus, and mouse hepatitis virus: diverse requirements by limitin and alpha interferon for interferon regulatory factor 1. J Virol. 2003;77:9622–9631.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Takahashi I, Kosaka H, Oritani K, et al. A new IFN-like cytokine, limitin, modulates the immune response without influencing thymocyte development. J Immunol. 2001;167:3156–3163.CrossRefPubMedGoogle Scholar
  10. 10.
    Domanski P, Colamonici OR. The type-I interferon receptor: the long and short of it. Cytokine Growth Factor Rev. 1996;7:143–151.CrossRefPubMedGoogle Scholar
  11. 11.
    Cohen B, Novick D, Barak S, Rubinstein M. Ligand-induced association of the type I interferon receptor components. Mol Cell Biol. 1995;15:4208–4214.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yan H, Krishnan K, Lim JT, Contillo LG, Krolewski JJ. Molecular characterization of an alpha interferon receptor 1 subunit (IFNaR1) domain required forTYK2 binding and signal transduction. Mol Cell Biol. 1996;16:2074–2082.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Leung S, Qureshi SA, Kerr IM, Darnell JE Jr, Stark GR. Role of STAT2 in the alpha interferon signaling pathway. Mol Cell Biol. 1995;15:1312–1317.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Improta T, Schindler C, Horvath CM, et al. Transcription factor ISGF-3 formation requires phosphorylated Stat91 protein, but Stat113 protein is phosphorylated independently of Stat91 protein. Proc Natl Acad Sci USA. 1994;91:4776–4780.CrossRefPubMedGoogle Scholar
  15. 15.
    Haque SJ, Williams BR. Identification and characterization of an interferon (IFN)-stimulated response element-IFN-stimulated gene factor 3-independent signaling pathway for IFN-alpha. J Biol Chem. 1994;269:19523–19529.PubMedGoogle Scholar
  16. 16.
    Taniguchi T, Ogasawara K, Takaoka A, Tanaka N. IRF family of transcription factors as regulators of host defense. Annu Rev Immunol. 2001;19:623–655.CrossRefPubMedGoogle Scholar
  17. 17.
    Ahmad S, Alsayed YM, Druker BJ, Platanias LC. The type I interferon receptor mediates tyrosine phosphorylation of the CrkL adaptor protein. J Biol Chem. 1997;272:29991–29994.CrossRefPubMedGoogle Scholar
  18. 18.
    Shimoda K, Kamesaki K, Numata A, et al. Cutting edge: tyk2 is required for the induction and nuclear translocation of Daxx which regulates IFN-alpha-induced suppression of B lymphocyte formation. J Immunol. 2002;169:4707–4711.CrossRefPubMedGoogle Scholar
  19. 19.
    Muller U, Steinhoff U, Reis LF, et al. Functional role of type I and type II interferons in antiviral defense. Science. 1994;264:1918–1921.CrossRefPubMedGoogle Scholar
  20. 20.
    Gribaudo G, Lembo D, Cavallo G, Landolfo S, Lengyel P. Interferon action: binding of viral RNA to the 40-kilodalton 2’-5’- oligoadenylate synthetase in interferon-treated Hela cells infected with encephalomyocarditis virus. J Virol. 1991;65:1748–1757.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Lengyel P. Biochemistry of interferons and their actions. Annu Rev Biochem. 1982;51:251–282.CrossRefPubMedGoogle Scholar
  22. 22.
    Samuel CE, Duncan GS, Knutson GS, Hershey JWB. Mechanisms of interferon action. J Biol Chem. 1984;259:13451–13457.PubMedGoogle Scholar
  23. 23.
    Pavlovic J, Zurcher T, Haller O, Staeheli P. Resistance to influenza virus and vesicular stomatitis virus conferred by expression of human MxA protein. J Virol. 1990;64:3370–3375.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Ortaldo JR, Mantovani A, Hobbs D, et al. Effects of several species of human leukocyte interferon on cytotoxic activity of NK cells and monocytes. Int J Cancer. 1983;31:285–289.CrossRefPubMedGoogle Scholar
  25. 25.
    Blackman MJ, Morris AG. The effect of interferon treatment of targets on susceptibility to cytotoxic T-lymphocyte killing: augmentation of allogenic killing and virus specific killing relative to viral antigen expression. Immunology. 1985;56:451–457.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Fellous M, Nir U, Wallach D, et al. Interferon-dependent induction of mRNA for the major histocompatibility antigens in human fibro- blasts and lymphoblastoid cells. Proc Natl Acad Sci USA. 1982;79:3082–3086.CrossRefPubMedGoogle Scholar
  27. 27.
    Yamada G, Ogawa M, Akagi K, et al. Specific depletion of the pre B-cell population induced by aberrant expression of human interferon regulatory factor 1 gene in transgenic mice. Proc Natl Acad Sci US A. 1991;88:532–536.CrossRefGoogle Scholar
  28. 28.
    Holtschke T, Lohler J, Kanno Y, et al: Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell. 1996;87:307–317.CrossRefPubMedGoogle Scholar
  29. 29.
    Koromilas AE, Roy S, Barber GN, Katze MG, Sonenberg N. Malignant transformation by a mutant of the IFN-inducible dsRNA- dependent protein kinase. Science. 1992;257:1685–1689.CrossRefPubMedGoogle Scholar
  30. 30.
    Rysiecki G, Gewert DR, Williams BRG. Constitutive expression of a 2’,5’-oligoadenylate synthetase cDNA results in increased antiviral activity and growth suppression. J Interferon Res. 1989;9:649–657.CrossRefPubMedGoogle Scholar
  31. 31.
    Tamura T, Ishihara M, Lamphier MS, et al. An IRF-1-dependent pathway of DNA damage-induced apoptosis in mitogen activated T lymphocytes. Nature. 1995;376:596–599.CrossRefPubMedGoogle Scholar
  32. 32.
    Takaoka A, Hayakawa S, Yanai H, et al. Integration of inter- feron-α/ß signaling to p53 responses in tumor suppression and antiviral defence. Nature. 2003;424:516–523.CrossRefPubMedGoogle Scholar
  33. 33.
    Platanias LC, Uddin S, Bruno E, et al. CrkL and CrkII participate in the generation of the growth inhibitory effects of interferons on pri- mary hematopoietic progenitors. Exp Hematol. 1999;27:1315–1321.CrossRefPubMedGoogle Scholar
  34. 34.
    Gongora R, Stephan RP, Zhang Z, Cooper MD. An essential role for Daxx in the inhibition of B lymphopoiesis by type I interferons. Immunity. 2001;14:727–737.CrossRefPubMedGoogle Scholar
  35. 35.
    Jonasch E, Haluska FG. Interferon in oncological practice: review of interferon biology, clinical applications, and toxicities. Oncologist 2001;6:34–55.CrossRefPubMedGoogle Scholar
  36. 36.
    Shaw GD, Boll W, Taira H, et al. Structure and expression of cloned murine IFN-alpha genes. Nucleic Acids Res. 1983;11:555–573.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Higashi Y, Sokawa Y, Watanabe Y, et al. Structure and expression of a cloned cDNA for mouse interferon-beta. J Biol Chem. 1983; 258:9522–9529.PubMedGoogle Scholar
  38. 38.
    Oritani K, Kincade PW, Zhang C, Tomiyama Y, Matsuzawa Y. Type I interferons and limitin: a comparison of structures, recep- tors, and functions. Cytokine Growth Factor Rev. 2001;12:337–348.CrossRefPubMedGoogle Scholar
  39. 39.
    Uze G, Lutfalla G, Mogensen KE. α and ß interferons and their receptor and their friends and relations. J Interferon Cytokine Res. 1995;15:3–26.CrossRefPubMedGoogle Scholar
  40. 40.
    Oritani K, Kincade PW, Tomiyama Y. Limitin: an interferon-like cytokine without myeloerythroid suppressive properties. J Mol Med.2001;79:168–174.CrossRefPubMedGoogle Scholar
  41. 41.
    Oritani K, Hirota S, Nakagawa T, et al. T lymphocytes constitu- tively produce an interferonlike cytokine limitin characterized as a heat- and acid-stable and heparin-binding glycoprotein. Blood. 2003;101:178–185.CrossRefPubMedGoogle Scholar
  42. 42.
    Takaoka A, Taniguchi T. New aspects of IFN-alpha/beta signalling in immunity, oncogenesis and bone metabolism. Cancer Sci. 2003; 94:405–411.CrossRefPubMedGoogle Scholar
  43. 43.
    Kawamoto S, Oritani K, Asakura E, et al. A new interferon, limitin displays equivalent immunomodulatory and antitumor activities without myelosuppressive properties as compared with interferon- alpha. Exp Hematol. 2004;32:797–805.CrossRefPubMedGoogle Scholar
  44. 44.
    Sperber S, Hunger S, Schwartz B, Pestka S. Anti-rhinoviral activity of recombinant and hybrid species of interferon alpha. Antiviral Res. 1993;22:121–129.CrossRefPubMedGoogle Scholar
  45. 45.
    Foster GR, Finter NB. Are all type I human interferons equivalent? J Viral Hepat. 1998;5:143–152.CrossRefPubMedGoogle Scholar
  46. 46.
    Rani SMR, Foster GR, Leung S, et al. Characterization of beta-R1, a gene that is selectively induced by interferon-beta (IFN-beta) compared with IFN-alpha. J Biol Chem. 1996;271:22878–22884.CrossRefPubMedGoogle Scholar
  47. 47.
    Abramovich C, Shulman LM, Ratovitski E, et al. Differential tyro- sine phosphorylation of the IFNAR chain of the type I interferon receptor and an associated surface protein in response to IFN alpha and IFN beta. EMBO J. 1994;13:5871–5877.CrossRefGoogle Scholar
  48. 48.
    Cebrian M, Yague E, Landazuri MO, et al. Different functional sites on rIFN-alpha 2 and their relation to the cellular binding site. J Immunol. 1987;138:484–490.PubMedGoogle Scholar
  49. 49.
    Kontsek P, Borecky L, Kontsekova E, et al. Mapping of two immunodominant structures on human interferon alpha 2c and their role in binding to cells. Mol Immunol. 1991;28:1289–1297.CrossRefPubMedGoogle Scholar
  50. 50.
    Uze G, Di Marco S, Mouchel-Vielh E, et al. Domains of interaction between alpha interferon and its receptor components. J Mol Biol. 1994;243:245–257.CrossRefPubMedGoogle Scholar
  51. 51.
    Runkel L, Pfeffer L, Lewerenz M, et al. Differences in activity between alpha and beta type I interferons explored by mutational analysis. J Biol Chem. 1998;273:8003–8008.CrossRefPubMedGoogle Scholar
  52. 52.
    Shorts LH, Dancz CE, Shupp JW, Pontzer CH. Characterization of N-terminal interferon tau mutants: P26L affords enhanced activity and lack of toxicity. Exp Biol Med. 2004;229:194–202.CrossRefGoogle Scholar
  53. 53.
    Bascosi M, Russo F, D'Innocenzo S, et al. Amantadine and inter- feron in the combined treatment of hepatitis C virus in elderly patients. Hepatol Res. 2002;22:231–239.CrossRefGoogle Scholar
  54. 54.
    Reddy KR, Wright TL, Pockros PJ, et al. Efficacy and safety of pegylated (40-kd) interferon alpha-2a compared with interferon alpha-2a in noncirrhotic patients with chronic hepatitis C. Hepatology. 2001;33:433–438.CrossRefPubMedGoogle Scholar
  55. 55.
    Melian EB, Plosker GL. Interferon alphacon-1: a review of its pharmacology and therapeutic efficacy in the treatment of chronic hepatitis C. Drugs. 2001;61:1661–1691.CrossRefPubMedGoogle Scholar
  56. 56.
    Weiss K. Safety profile of interferon-α therapy. Semin Oncol. 1998; 25:9–13.PubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2004

Authors and Affiliations

  1. 1.Department of Hematology and Oncology, Graduate School of MedicineOsaka UniversitySuita, OsakaJapan

Personalised recommendations