International Journal of Hematology

, Volume 80, Issue 2, pp 120–127 | Cite as

Beyond Genetics—The Emerging Role of Epigenetic Changes in Hematopoietic Malignancies

  • Oliver Galm
  • Manel Esteller


The term epigenetic refers to a heritable change in gene expression that is mediated by mechanisms other than alterations in the primary nucleotide sequence. DNA methylation at cytosine bases that are located 5′ to guanosine within a CpG dinucleotide is the main epigenetic modification in humans. Patterns of DNA methylation are profoundly deranged in human cancer and comprise genome-wide losses as well as regional gains in DNA methylation. Hypermethylation of CpG islands within gene promoter regions is associated with transcriptional inactivation and represents, in addition to genetic aberrations, an important mechanism of gene silencing in the pathogenesis of hematopoietic malignancies. This epigenetic phenomenon acts as an alternative to mutations and deletions to disrupt tumor suppressor gene function.A large number of genes involving fundamental cellular pathways may be affected in virtually all types of human cancer by aberrant CpG island methylation in association with transcriptional silencing. Altered methylation patterns can be used as biomarkers for cancer detection, assessment of prognosis, and prediction of response to antitumor treatment. Furthermore, clinical trials using epigenetically targeted therapies have yielded promising results for acute and chronic leukemias as well as for myelodysplastic syndromes.The exploration of our growing knowledge about epigenetic aberrations may help develop novel strategies for the diagnosis and treatment of hematopoietic malignancies in the future.

Key words

DNA methylation Epigenetics CpG island Transcriptional silencing Tumor suppressor genes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet. 1999;21:163–167.PubMedCrossRefGoogle Scholar
  3. 3.
    Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002;21:5427–5440.PubMedCrossRefGoogle Scholar
  4. 4.
    Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349:2042–2054.PubMedCrossRefGoogle Scholar
  5. 5.
    Holliday R, Grigg GW. DNA methylation and mutation. Mutat Res. 1993;285:61–67.PubMedCrossRefGoogle Scholar
  6. 6.
    Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21.PubMedCrossRefGoogle Scholar
  7. 7.
    Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987;196:261–282.PubMedCrossRefGoogle Scholar
  8. 8.
    Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–428.PubMedCrossRefGoogle Scholar
  9. 9.
    Esteller M, Herman JG. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol. 2002;196:1–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Constancia M, Pickard B, Kelsey G, Reik W. Imprinting mechanisms. Genome Res. 1998;8:881–900.PubMedCrossRefGoogle Scholar
  11. 11.
    Robertson KD, Jones PA. DNA methylation: past, present and future directions. Carcinogenesis. 2000;21:461–467.PubMedCrossRefGoogle Scholar
  12. 12.
    Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(suppl):245–254.PubMedCrossRefGoogle Scholar
  13. 13.
    Feinberg AP,Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301:89–92.PubMedCrossRefGoogle Scholar
  14. 14.
    Feinberg AP, Gehrke CW, Kuo KC, Ehrlich M. Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res. 1988;48:1159–1161.PubMedGoogle Scholar
  15. 15.
    Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene. 2002;21:5400–5413.PubMedCrossRefGoogle Scholar
  16. 16.
    Gaudet F, Hodgson JG, Eden A, et al. Induction of tumors in mice by genomic hypomethylation. Science. 2003;300:489–492.PubMedCrossRefGoogle Scholar
  17. 17.
    Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000;16:168–174.PubMedCrossRefGoogle Scholar
  18. 18.
    Knudson AG. Two genetic hits (more or less) to cancer. Nat Rev Cancer. 2001;1:157–162.PubMedCrossRefGoogle Scholar
  19. 19.
    Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998;19:219–220.PubMedCrossRefGoogle Scholar
  20. 20.
    Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–257.PubMedCrossRefGoogle Scholar
  21. 21.
    Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet. 2000;24:88–91.PubMedCrossRefGoogle Scholar
  22. 22.
    Rountree MR, Bachman KE, Baylin SB. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet. 2000;25:269–277.PubMedCrossRefGoogle Scholar
  23. 23.
    Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 1998;12:599–606.PubMedCrossRefGoogle Scholar
  24. 24.
    Jones PL, Veenstra GJ, Wade PA, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998;19:187–191.PubMedCrossRefGoogle Scholar
  25. 25.
    Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet. 2001;10:687–692.PubMedCrossRefGoogle Scholar
  26. 26.
    Bachman KE, Park BH, Rhee I, et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell. 2003;3:89–95.PubMedCrossRefGoogle Scholar
  27. 27.
    Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res. 2001;61:3225–3229.PubMedGoogle Scholar
  28. 28.
    Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet. 1994;7:536–540.PubMedCrossRefGoogle Scholar
  29. 29.
    Herman JG, Latif F,Weng Y, et al. Silencing of the VHL tumorsuppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A. 1994;91:9700–9704.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Graff JR, Herman JG, Lapidus RG, et al. E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res. 1995;55:5195–5199.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Merlo A, Herman JG, Mao L, et al. 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995;1:686–692.PubMedCrossRefGoogle Scholar
  32. 32.
    Stirzaker C, Millar DS, Paul CL, et al. Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors. Cancer Res. 1997;57:2229–2237.PubMedGoogle Scholar
  33. 33.
    Dobrovic A, Simpfendorfer D. Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res. 1997;57:3347–3350.PubMedGoogle Scholar
  34. 34.
    Esteller M, Corn PG, Urena JM, Gabrielson E, Baylin SB, Herman JG. Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res. 1998;58:4515–4518.PubMedGoogle Scholar
  35. 35.
    Herman JG, Umar A, Polyak K, et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A. 1998;95:6870–6875.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 1999;59:793–797.PubMedGoogle Scholar
  37. 37.
    Bachman KE, Herman JG, Corn PG, et al. Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res. 1999;59:798–802.PubMedGoogle Scholar
  38. 38.
    Corn PG, Kuerbitz SJ, van Noesel MM, et al.Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt’s lymphoma is associated with 5′ CpG island methylation. Cancer Res. 1999;59:3352–3356.PubMedGoogle Scholar
  39. 39.
    Katzenellenbogen RA, Baylin SB, Herman JG. Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood. 1999;93:4347–4353.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Cameron EE, Baylin SB, Herman JG. p15INK4B CpG island methylation in primary acute leukemia is heterogeneous and suggests density as a critical factor for transcriptional silencing. Blood. 1999;94:2445–2451.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Virmani AK, Rathi A, Zochbauer-Muller S, et al. Promoter methylation and silencing of the retinoic acid receptor-β gene in lung carcinomas. J Natl Cancer Inst. 2000;92:1303–1307.PubMedCrossRefGoogle Scholar
  42. 42.
    Esteller M,Tortola S,Toyota M, et al. Hypermethylation-associated inactivation of p14ARF is independent of p16INK4a methylation and p53 mutational status. Cancer Res. 2000;60:129–133.PubMedGoogle Scholar
  43. 43.
    Conway KE, McConnell BB, Bowring CE, Donald CD,Warren ST, Vertino PM. TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res. 2000;60:6236–6242.PubMedGoogle Scholar
  44. 44.
    Yoshikawa H, Matsubara K, Qian GS, et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet. 2001;28:29–35.PubMedGoogle Scholar
  45. 45.
    Banelli B, Casciano I, Croce M, et al. Expression and methylation of CASP8 in neuroblastoma: identification of a promoter region. Nat Med. 2002;8:1333–1335, author reply 1335.PubMedCrossRefGoogle Scholar
  46. 46.
    Esteller M, Guo M, Moreno V, et al. Hypermethylation-associated inactivation of the cellular retinol-binding-protein 1 gene in human cancer. Cancer Res. 2002;62:5902–5905.PubMedGoogle Scholar
  47. 47.
    Chen WY, Zeng X, Carter MG, et al. Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Nat Genet. 2003;33:197–202.PubMedCrossRefGoogle Scholar
  48. 48.
    Suzuki H, Watkins DN, Jair KW, et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet. 2004;36:417–422.PubMedCrossRefGoogle Scholar
  49. 49.
    Fraga MF, Esteller M. DNA methylation: a profile of methods and applications. Biotechniques. 2002;33:632, 634, 636-649.PubMedCrossRefGoogle Scholar
  50. 50.
    Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992;89:1827–1831.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Clark SJ, Harrison J, Paul CL, Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 1994;22:2990–2997.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Sadri R, Hornsby PJ. Rapid analysis of DNA methylation using new restriction enzyme sites created by bisulfite modification. Nucleic Acids Res. 1996;24:5058–5059.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Xiong Z, Laird PW. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 1997;25:2532–2534.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Gonzalgo ML, Jones PA. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res. 1997;25:2529–2531.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Galm O, Rountree MR, Bachman KE, Jair KW, Baylin SB, Herman JG. Enzymatic regional methylation assay: a novel method to quantify regional CpG methylation density. Genome Res. 2002;12:153–157.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation- specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93:9821–9826.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Corn PG, Smith BD, Ruckdeschel ES, Douglas D, Baylin SB, Herman JG. E-cadherin expression is silenced by 5′ CpG island methylation in acute leukemia. Clin Cancer Res. 2000;6:4243–4248.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343:1350–1354.PubMedCrossRefGoogle Scholar
  59. 59.
    Galm O, Yoshikawa H, Esteller M, Osieka R, Herman JG. SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood. 2003;101:2784–2788.PubMedCrossRefGoogle Scholar
  60. 60.
    Ahrendt SA, Chow JT, Xu LH, et al. Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. J Natl Cancer Inst. 1999;91:332–339.PubMedCrossRefGoogle Scholar
  61. 61.
    van Engeland M, Roemen GM, Brink M, et al. K-ras mutations and RASSF1A promoter methylation in colorectal cancer. Oncogene. 2002;21:3792–3795.PubMedCrossRefGoogle Scholar
  62. 62.
    House MG, Guo M, Iacobuzio-Donahue C, Herman JG. Molecular progression of promoter methylation in intraductal papillary mucinous neoplasms (IPMN) of the pancreas. Carcinogenesis. 2003;24:193–198.PubMedCrossRefGoogle Scholar
  63. 63.
    Brock MV, Gou M, Akiyama Y, et al. Prognostic importance of promoter hypermethylation of multiple genes in esophageal adenocarcinoma. Clin Cancer Res. 2003;9:2912–2919.PubMedGoogle Scholar
  64. 64.
    Esteller M. Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin Immunol. 2003;109:80–88.PubMedCrossRefGoogle Scholar
  65. 65.
    Quesnel B, Guillerm G, Vereecque R, et al. Methylation of the p15INK4b gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood. 1998;91:2985–2990.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Guillerm G, Gyan E, Wolowiec D, et al. p16INK4a and p15INK4b gene methylations in plasma cells from monoclonal gammopathy of undetermined significance. Blood. 2001;98:244–246.PubMedCrossRefGoogle Scholar
  67. 67.
    Li Y, Nagai H, Ohno T, et al. Aberrant DNA methylation of p57KIP2 gene in the promoter region in lymphoid malignancies of B-cell phenotype. Blood. 2002;100:2572–2577.PubMedCrossRefGoogle Scholar
  68. 68.
    Esteller M, Gaidano G, Goodman SN, et al. Hypermethylation of the DNA repair gene O6-methylguanine DNA methyltransferase and survival of patients with diffuse large B-cell lymphoma. J Natl Cancer Inst. 2002;94:26–32.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Rossi D, Capello D, Gloghini A, et al. Aberrant promoter methylation of multiple genes throughout the clinico-pathologic spectrum of B-cell neoplasia. Haematologica. 2004;89:154–164.PubMedGoogle Scholar
  70. 70.
    Ng MH, Chung YF, Lo KW, Wickham NW, Lee JC, Huang DP. Frequent hypermethylation of p16 and p15 genes in multiple myeloma. Blood. 1997;89:2500–2506.PubMedGoogle Scholar
  71. 71.
    Gonzalez M, Mateos MV, Garcia-Sanz R, et al. De novo methylation of tumor suppressor gene p16/INK4a is a frequent finding in multiple myeloma patients at diagnosis. Leukemia. 2000;14:183–187.PubMedCrossRefGoogle Scholar
  72. 72.
    Ng MH, To KW, Lo KW, et al. Frequent death-associated protein kinase promoter hypermethylation in multiple myeloma. Clin Cancer Res. 2001;7:1724–1729.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Seidl S, Ackermann J, Kaufmann H, Drach J, Zielinski C, Zoechbauer-Mueller S. DNA-methylation changes of tumor suppressor genes in multiple myeloma and monoclonal gammopathy of undermined significance [abstract]. Blood. 2002;100:605a.Google Scholar
  74. 74.
    Galm O, Jost E, Gehbauer G, Herman JG, Osieka R. Epigenetic changes in multiple myeloma [abstract]. Proc Am Assoc Cancer Res (2nd ed). 2003;44:R4110.Google Scholar
  75. 75.
    Nguyen TT, Mohrbacher AF, Tsai YC, et al. Quantitative measure of c-abl and p15 methylation in chronic myelogenous leukemia: biological implications. Blood. 2000;95:2990–2992.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Sun B, Jiang G, Zaydan MA, La Russa VF, Safah H, Ehrlich M. ABL1 promoter methylation can exist independently of BCRABL transcription in chronic myeloid leukemia hematopoietic progenitors. Cancer Res. 2001;61:6931–6937.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Garcia-Manero G, Daniel J, Smith TL, et al. DNA methylation of multiple promoter-associated CpG islands in adult acute lymphocytic leukemia. Clin Cancer Res. 2002;8:2217–2224.Google Scholar
  78. 78.
    Gutierrez MI, Siraj AK, Bhargava M, et al. Concurrent methylation of multiple genes in childhood ALL: Correlation with phenotype and molecular subgroup. Leukemia. 2003;17:1845–1850.PubMedCrossRefGoogle Scholar
  79. 79.
    Melki JR, Vincent PC, Clark SJ. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res. 1999;59:3730–3740.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Toyota M, Kopecky KJ, Toyota MO, Jair KW, Willman CL, Issa JP. Methylation profiling in acute myeloid leukemia. Blood. 2001;97:2823–2829.CrossRefGoogle Scholar
  81. 81.
    Esteller M, Fraga MF, Paz MF, et al. Cancer epigenetics and methylation. Science. 2002;297:1807–1808.PubMedCrossRefGoogle Scholar
  82. 82.
    Chen CY, Tsay W, Tang JL, et al. SOCS1 methylation in patients with newly diagnosed acute myeloid leukemia. Genes Chromosomes Cancer. 2003;37:300–305.PubMedCrossRefGoogle Scholar
  83. 83.
    Di Croce L, Raker VA, Corsaro M, et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science. 2002;295:1079–1082.PubMedCrossRefGoogle Scholar
  84. 84.
    Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100:1532–1542.PubMedCrossRefGoogle Scholar
  85. 85.
    Sidransky D. Emerging molecular markers of cancer. Nat Rev Cancer. 2002;2:210–219.PubMedCrossRefGoogle Scholar
  86. 86.
    Laird PW. Early detection: the power and the promise of DNA methylation markers. Nat Rev Cancer. 2003;3:253–266.PubMedCrossRefGoogle Scholar
  87. 87.
    Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial: the Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood. 1998;92:2322–2333.PubMedGoogle Scholar
  88. 88.
    Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC. Advances in biology of multiple myeloma: clinical applications. Blood. 2004. In press.Google Scholar
  89. 89.
    Wong IH, Ng MH, Huang DP, Lee JC. Aberrant p15 promoter methylation in adult and childhood acute leukemias of nearly all morphologic subtypes: potential prognostic implications. Blood. 2000;95:1942–1949.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Chim CS, Liang R, Tam CY, Kwong YL. Methylation of p15 and p16 genes in acute promyelocytic leukemia: potential diagnostic and prognostic significance. J Clin Oncol. 2001;19:2033–2040.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Kramer A, Schultheis B, Bergmann J, et al. Alterations of the cyclin D1/pRb/p16INK4A pathway in multiple myeloma. Leukemia. 2002;16:1844–1851.PubMedCrossRefGoogle Scholar
  92. 92.
    Mateos MV, Garcia-Sanz R, Lopez-Perez R, et al. Methylation is an inactivating mechanism of the p16 gene in multiple myeloma associated with high plasma cell proliferation and short survival. Br J Haematol. 2002;118:1034–1040.PubMedCrossRefGoogle Scholar
  93. 93.
    Claus R, Lubbert M. Epigenetic targets in hematopoietic malignancies. Oncogene. 2003;22:6489–6496.PubMedCrossRefGoogle Scholar
  94. 94.
    Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell. 1980;20:85–93.PubMedCrossRefGoogle Scholar
  95. 95.
    Paz MF, Fraga MF, Avila S, et al. A systematic profile of DNA methylation in human cancer cell lines. Cancer Res. 2003;63:1114–1121.PubMedGoogle Scholar
  96. 96.
    Lubbert M. DNA methylation inhibitors in the treatment of leukemias, myelodysplastic syndromes and hemoglobinopathies: clinical results and possible mechanisms of action. Curr Top Microbiol Immunol. 2000;249:135–164.PubMedGoogle Scholar
  97. 97.
    Gore SD, Carducci MA. Modifying histones to tame cancer: clinical development of sodium phenylbutyrate and other histone deacetylase inhibitors. Expert Opin Investig Drugs. 2000;9:2923–2934.PubMedCrossRefGoogle Scholar
  98. 98.
    Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999;21:103–107.PubMedCrossRefGoogle Scholar
  99. 99.
    Suzuki H, Gabrielson E, Chen W, et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet. 2002;31:141–149.PubMedCrossRefGoogle Scholar
  100. 100.
    Wijermans P, Lubbert M, Verhoef G, et al. Low-dose 5-aza-2′- deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol. 2000;18:956–962.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89:2079–2088.PubMedGoogle Scholar
  102. 102.
    Daskalakis M, Nguyen TT, Nguyen C, et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-aza-2′-deoxycytidine (decitabine) treatment. Blood. 2002;100:2957–2964.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002;20:2429–2440.PubMedCrossRefGoogle Scholar
  104. 104.
    Kantarjian HM, O’Brien S, Cortes J, et al. Results of decitabine (5-aza-2′ deoxycytidine) therapy in 130 patients with chronic myelogenous leukemia. Cancer. 2003;98:522–528.CrossRefGoogle Scholar
  105. 105.
    Miller CB, Herman JG, Baylin SB, Galm O, Yerian JA, Gore SD. A phase I dose deescalation trial of combined DNA methyltransferase (MeT)/histone deacetylase (HDAC) inhibition in myeloid malignancies [abstract]. Blood. 2001;98:622a.CrossRefGoogle Scholar
  106. 106.
    Liu S, Shen T, Rush LJ, et al. AML1/ETO associates with DNA methyltransferase I (DNMT1) in inducing transcriptional repression of the AML1-target gene interleukin-3 (IL-3) [abstract]. Blood. 2003;102:218a.Google Scholar

Copyright information

© The Japanese Society of Hematology 2004

Authors and Affiliations

  1. 1.Medizinische Klinik IVUniversitaetsklinikum AachenAachenGermany
  2. 2.Cancer Epigenetics LaboratoryMolecular Pathology Program, Spanish National Cancer CentreMadridSpain

Personalised recommendations