Skip to main content
Log in

Epigenetic System: A Pathway to Malignancies and a Therapeutic Target

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Cancer cells possess both genetic and epigenetic alterations that dysregulate essential cellular processes, leading to disordered cell proliferation and differentiation. Oncogenes and tumor suppressor genes have been found to be activated and inactivated, respectively, in malignant cells. Epigenetic regulation of the genome is mediated by interactions between DNA methylation, chromatin, and modifications of histones and various transcriptional regulators. Recent studies have shown that some components of the epigenetic system as well as epigenetically mutated genes are diagnostic and therapeutic targets in cancer. We discuss the molecular basis of the epigenetic mechanism in association with the development of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grewal SI, Moazed D. Heterochromatin and epigenetic control of gene expression. Science. 2003;301:798–802.

    Article  PubMed  CAS  Google Scholar 

  2. Bird AP,Wolffe AP. Methylation-induced repression-belts, braces, and chromatin. Cell. 1999;99:451–454.

    Article  PubMed  CAS  Google Scholar 

  3. Nakao M. Epigenetics: interaction of DNA methylation and chromatin. Gene. 2001;278:25–31.

    Article  PubMed  CAS  Google Scholar 

  4. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–45.

    Article  PubMed  CAS  Google Scholar 

  5. Turner BM. Histone acetylation and an epigenetic code. Bioessays. 2000;22:836–845.

    Article  PubMed  CAS  Google Scholar 

  6. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4:143–153.

    Article  PubMed  CAS  Google Scholar 

  7. Momparler RL. Cancer epigenetics. Oncogene. 2003;22:6479–6483.

    Article  PubMed  CAS  Google Scholar 

  8. Esteller M. Cancer epigenetics: DNA methylation and chromatin alterations in human cancer. Adv Exp Med Biol. 2003;532:39–49.

    Article  PubMed  CAS  Google Scholar 

  9. Jones PA. Epigenetics in carcinogenesis and cancer prevention. Ann N Y Acad Sci. 2003;983:213–219.

    Article  PubMed  CAS  Google Scholar 

  10. Urnov FD. Chromatin as a tool for the study of genome function in cancer. Ann N Y Acad Sci. 2003;983:5–21.

    Article  PubMed  CAS  Google Scholar 

  11. Esteller M. Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin Immunol. 2003;109:80–88.

    Article  PubMed  CAS  Google Scholar 

  12. Claus R, Lubbert M. Epigenetic targets in hematopoietic malignancies. Oncogene. 2003;22:6489–6496.

    Article  PubMed  CAS  Google Scholar 

  13. Wolffe AP, Matzke MA. Epigenetics: regulation through repression. Science. 1999;286:481–486.

    Article  PubMed  CAS  Google Scholar 

  14. Fischle W,Wang Y, Allis CD. Binary switches and modification cassettes in histone biology and beyond. Nature. 2003;425:475–479.

    Article  PubMed  CAS  Google Scholar 

  15. Jenuwein T. Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol. 2001;11:266–273.

    Article  PubMed  CAS  Google Scholar 

  16. Marmorstein R, Roth SY. Histone acetyltransferases: function, structure, and catalysis. Curr Opin Genet Dev. 2001;11:155–161.

    Article  PubMed  CAS  Google Scholar 

  17. Rakyan VK, Preis J, Morgan HD, Whitelaw E. The marks, mechanisms and memory of epigenetic states in mammals. Biochem J. 2001;356:1–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kingston RE, Narlikar GJ. ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev. 1999;13:2339–2352.

    Article  PubMed  CAS  Google Scholar 

  19. Ng HH, Bird A. DNA methylation and chromatin modification. Curr Opin Genet Dev. 1999;9:158–163.

    Article  PubMed  CAS  Google Scholar 

  20. Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9:2395–2402.

    Article  PubMed  CAS  Google Scholar 

  21. Ballestar E, Wolffe AP. Methyl-CpG-binding proteins. Eur J Biochem. 2001;268:1–6.

    Article  PubMed  CAS  Google Scholar 

  22. Wade PA. Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Hum Mol Genet. 2001;10:693–698.

    Article  PubMed  CAS  Google Scholar 

  23. Watanabe S, Ichimura T, Fujita N, et al. Methylated DNA-binding domain 1 and methylpurine-DNA glycosylase link transcriptional repression and DNA repair in chromatin. Proc Natl Acad Sci U S A. 2003;100:12859–12864.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ahringer J. NuRD and SIN3 histone deacetylase complexes in development. Trends Genet. 2000;16:351–356.

    Article  PubMed  CAS  Google Scholar 

  25. Knoepfler PS, Eisenman RN. Sin meets NuRD and other tails of repression. Cell. 1999;99:447–450.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang HS, Dean DC. Rb-mediated chromatin structure regulation and transcriptional repression. Oncogene. 2001;20:3134–3138.

    Article  PubMed  CAS  Google Scholar 

  27. Kingston RE, Bunker CA, Imbalzano AN. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 1996;10:905–920.

    Article  PubMed  CAS  Google Scholar 

  28. Satijn DP, Otte AP. Polycomb group protein complexes: do different complexes regulate distinct target genes? Biochim Biophys Acta. 1999;1447:1–16.

    Article  PubMed  CAS  Google Scholar 

  29. Borden KL. Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol Cell Biol. 2002;22:5259–5269.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhong S, Salomoni P, Pandolfi PP. The transcriptional role of PML and the nuclear body. Nat Cell Biol. 2000;2:E85-E90.

    Article  PubMed  CAS  Google Scholar 

  31. Di Croce L, Raker VA, Corsaro M, et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science. 2002;295:1079–1082.

    Article  PubMed  Google Scholar 

  32. Vigushin DM, Coombes RC. Histone deacetylase inhibitors in cancer treatment. Anticancer Drugs. 2002;13:1–13.

    Article  PubMed  CAS  Google Scholar 

  33. Reid GK, Besterman JM, MacLeod AR. Selective inhibition of DNA methyltransferase enzymes as a novel strategy for cancer treatment. Curr Opin Mol Ther. 2002;4:130–137.

    PubMed  CAS  Google Scholar 

  34. Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst. 2000;92:1210–1216..

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuyoshi Nakao.

About this article

Cite this article

Nakao, M., Minami, T., Ueda, Y. et al. Epigenetic System: A Pathway to Malignancies and a Therapeutic Target. Int J Hematol 80, 103–107 (2004). https://doi.org/10.1532/IJH97.04052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.04052

Key words

Navigation