International Journal of Hematology

, Volume 80, Issue 2, pp 103–107 | Cite as

Epigenetic System: A Pathway to Malignancies and a Therapeutic Target

  • Mitsuyoshi Nakao
  • Takeshi Minami
  • Yasuaki Ueda
  • Yasuo Sakamoto
  • Takaya Ichimura


Cancer cells possess both genetic and epigenetic alterations that dysregulate essential cellular processes, leading to disordered cell proliferation and differentiation. Oncogenes and tumor suppressor genes have been found to be activated and inactivated, respectively, in malignant cells. Epigenetic regulation of the genome is mediated by interactions between DNA methylation, chromatin, and modifications of histones and various transcriptional regulators. Recent studies have shown that some components of the epigenetic system as well as epigenetically mutated genes are diagnostic and therapeutic targets in cancer. We discuss the molecular basis of the epigenetic mechanism in association with the development of cancer.

Key words

Epigenetics Chromatin Histone Cancer Therapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grewal SI, Moazed D. Heterochromatin and epigenetic control of gene expression. Science. 2003;301:798–802.CrossRefPubMedGoogle Scholar
  2. 2.
    Bird AP,Wolffe AP. Methylation-induced repression-belts, braces, and chromatin. Cell. 1999;99:451–454.CrossRefPubMedGoogle Scholar
  3. 3.
    Nakao M. Epigenetics: interaction of DNA methylation and chromatin. Gene. 2001;278:25–31.CrossRefPubMedGoogle Scholar
  4. 4.
    Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–45.CrossRefPubMedGoogle Scholar
  5. 5.
    Turner BM. Histone acetylation and an epigenetic code. Bioessays. 2000;22:836–845.CrossRefPubMedGoogle Scholar
  6. 6.
    Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4:143–153.CrossRefPubMedGoogle Scholar
  7. 7.
    Momparler RL. Cancer epigenetics. Oncogene. 2003;22:6479–6483.CrossRefPubMedGoogle Scholar
  8. 8.
    Esteller M. Cancer epigenetics: DNA methylation and chromatin alterations in human cancer. Adv Exp Med Biol. 2003;532:39–49.CrossRefPubMedGoogle Scholar
  9. 9.
    Jones PA. Epigenetics in carcinogenesis and cancer prevention. Ann N Y Acad Sci. 2003;983:213–219.CrossRefPubMedGoogle Scholar
  10. 10.
    Urnov FD. Chromatin as a tool for the study of genome function in cancer. Ann N Y Acad Sci. 2003;983:5–21.CrossRefPubMedGoogle Scholar
  11. 11.
    Esteller M. Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin Immunol. 2003;109:80–88.CrossRefPubMedGoogle Scholar
  12. 12.
    Claus R, Lubbert M. Epigenetic targets in hematopoietic malignancies. Oncogene. 2003;22:6489–6496.CrossRefPubMedGoogle Scholar
  13. 13.
    Wolffe AP, Matzke MA. Epigenetics: regulation through repression. Science. 1999;286:481–486.CrossRefPubMedGoogle Scholar
  14. 14.
    Fischle W,Wang Y, Allis CD. Binary switches and modification cassettes in histone biology and beyond. Nature. 2003;425:475–479.CrossRefPubMedGoogle Scholar
  15. 15.
    Jenuwein T. Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol. 2001;11:266–273.CrossRefPubMedGoogle Scholar
  16. 16.
    Marmorstein R, Roth SY. Histone acetyltransferases: function, structure, and catalysis. Curr Opin Genet Dev. 2001;11:155–161.CrossRefPubMedGoogle Scholar
  17. 17.
    Rakyan VK, Preis J, Morgan HD, Whitelaw E. The marks, mechanisms and memory of epigenetic states in mammals. Biochem J. 2001;356:1–10.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kingston RE, Narlikar GJ. ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev. 1999;13:2339–2352.CrossRefPubMedGoogle Scholar
  19. 19.
    Ng HH, Bird A. DNA methylation and chromatin modification. Curr Opin Genet Dev. 1999;9:158–163.CrossRefPubMedGoogle Scholar
  20. 20.
    Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9:2395–2402.CrossRefPubMedGoogle Scholar
  21. 21.
    Ballestar E, Wolffe AP. Methyl-CpG-binding proteins. Eur J Biochem. 2001;268:1–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Wade PA. Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Hum Mol Genet. 2001;10:693–698.CrossRefPubMedGoogle Scholar
  23. 23.
    Watanabe S, Ichimura T, Fujita N, et al. Methylated DNA-binding domain 1 and methylpurine-DNA glycosylase link transcriptional repression and DNA repair in chromatin. Proc Natl Acad Sci U S A. 2003;100:12859–12864.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ahringer J. NuRD and SIN3 histone deacetylase complexes in development. Trends Genet. 2000;16:351–356.CrossRefPubMedGoogle Scholar
  25. 25.
    Knoepfler PS, Eisenman RN. Sin meets NuRD and other tails of repression. Cell. 1999;99:447–450.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang HS, Dean DC. Rb-mediated chromatin structure regulation and transcriptional repression. Oncogene. 2001;20:3134–3138.CrossRefPubMedGoogle Scholar
  27. 27.
    Kingston RE, Bunker CA, Imbalzano AN. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 1996;10:905–920.CrossRefPubMedGoogle Scholar
  28. 28.
    Satijn DP, Otte AP. Polycomb group protein complexes: do different complexes regulate distinct target genes? Biochim Biophys Acta. 1999;1447:1–16.CrossRefPubMedGoogle Scholar
  29. 29.
    Borden KL. Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol Cell Biol. 2002;22:5259–5269.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhong S, Salomoni P, Pandolfi PP. The transcriptional role of PML and the nuclear body. Nat Cell Biol. 2000;2:E85-E90.CrossRefPubMedGoogle Scholar
  31. 31.
    Di Croce L, Raker VA, Corsaro M, et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science. 2002;295:1079–1082.CrossRefPubMedGoogle Scholar
  32. 32.
    Vigushin DM, Coombes RC. Histone deacetylase inhibitors in cancer treatment. Anticancer Drugs. 2002;13:1–13.CrossRefPubMedGoogle Scholar
  33. 33.
    Reid GK, Besterman JM, MacLeod AR. Selective inhibition of DNA methyltransferase enzymes as a novel strategy for cancer treatment. Curr Opin Mol Ther. 2002;4:130–137.PubMedGoogle Scholar
  34. 34.
    Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst. 2000;92:1210–1216..CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2004

Authors and Affiliations

  • Mitsuyoshi Nakao
    • 1
  • Takeshi Minami
    • 1
  • Yasuaki Ueda
    • 1
  • Yasuo Sakamoto
    • 1
  • Takaya Ichimura
    • 1
  1. 1.Department of Regeneration Medicine, Institute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan

Personalised recommendations