International Journal of Hematology

, Volume 79, Issue 4, pp 311–321 | Cite as

Treatment of Indolent Non-Hodgkin’s Lymphoma with Cladribine as Single-Agent Therapy and in Combination with Mitoxantrone

  • James O. Armitage
  • Kensei Tobinai
  • Dieter Hoelzer
  • Mathias J. Rummel
Review Article


The termindolent in describing a non-Hodgkin’s lymphoma (NHL) generally refers to a group of B-cell NHLs composed of predominantly small cells that make up several categories, including follicular lymphoma, small lymphocytic lymphoma, and lymphoma of mucosa-associated lymphoid tissue. Most patients with follicular lymphoma respond to therapy, and the average survival time in large series is approximately 10 years. Patients who achieve a complete remission with initial treatment have an approximately 25% chance of remaining free of disease for 10 years. However, this means that more than 80% of patients will require salvage therapy. Cladribine is a newer purine analogue and is of particular interest because it is resistant to deam-ination by adenosine deaminase. It is cytotoxic to both proliferating and resting lymphocytes, making it an attractive agent for the treatment of indolent NHL. In this review article, we summarize the current treatment approaches for indolent NHL and the results of cladribine monotherapy studies in Japan and cladribine studies in Germany that have focused on a combination therapy with mitoxantrone. Cladribine is a potent inhibitor of DNA repair. The combination of a DNA-damaging agent with an inhibitor of DNA repair constitutes the rationale for combining cladribine with mitoxantrone. A German study has demonstrated that the combination of reduced-dose cladribine and mitoxantrone is a highly active regimen with favorable toxicity profiles. Cladribine is highly effective as a single agent and in combination with mitoxantrone in the treatment of indolent NHL, and its availability broadens the range of therapeutic options for indolent NHL.

Key words

Cladribine 2-CdA Mitoxantrone Indolent lymphoma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harris NL, Jaffe ES, Diebold J, et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting —Airlie House, Virginia, November 1997.J Clin Oncol. 1999;17: 3835–3849.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    The International Non-Hodgkin’s Lymphoma Prognostic Factors Project: a predictive model for aggressive non-Hodgkin’s lymphoma.N Engl J Med. 1993;329:987–994.CrossRefGoogle Scholar
  3. 3.
    Armitage JO, Weisenburger DD. New approach to classifying non- Hodgkin’s lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin’s Lymphoma Classification Project.J Clin Oncol. 1998;16:2780–2795.CrossRefPubMedGoogle Scholar
  4. 4.
    Anderson JR, Armitage JO, Weisenburger DD. Epidemiology of the non-Hodgkin’s lymphomas: distributions of the major subtypes differ by geographic locations. Non-Hodgkin’s Lymphoma Classification Project.Ann Oncol. 1998;9:717–720.CrossRefPubMedGoogle Scholar
  5. 5.
    The Non-Hodgkin’s Lymphoma Classification Project. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma.Blood. 1997;89:3909–3918.Google Scholar
  6. 6.
    Horning SJ, Rosenberg SA. The natural history of initially untreated low-grade non-Hodgkin’s lymphomas.N Engl J Med. 1984;311:1471–1475.CrossRefPubMedGoogle Scholar
  7. 7.
    Mac Manus MP, Hoppe RT. Is radiotherapy curative for stage I and II low-grade follicular lymphoma? Results of a long-term follow- up study of patients treated at Stanford University.J Clin Oncol. 1996;14:1282–1290.CrossRefGoogle Scholar
  8. 8.
    Wilder RB, Jones D, Tucker SL, et al. Long-term results with radiotherapy for stage I-II follicular lymphomas.Int J Radiat Oncol Biol Phys. 2001;51:1219–1227.CrossRefPubMedGoogle Scholar
  9. 9.
    Gospodarowicz MK, Bush RS, Brown TC, Chua T. Prognostic factors in nodular lymphomas: a multivariate analysis based on the Princess Margaret Hospital experience.Int J Radiat Oncol Biol Phys. 1984;10:489–497.CrossRefPubMedGoogle Scholar
  10. 10.
    Seymour JF, Cusack JD, Lerner SA, Pollock RE, Keating MJ. Case/ control study of the role of splenectomy in chronic lymphocytic leukemia.J Clin Oncol. 1997;15:52–60.CrossRefPubMedGoogle Scholar
  11. 11.
    Gallagher CJ, Gregory WM, Jones AE, et al. Follicular lymphoma: prognostic factors for response and survival.J Clin Oncol. 1986;4:1470–1480.CrossRefPubMedGoogle Scholar
  12. 12.
    McLaughlin P, Grillo-Lopez AJ, Link BK, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program.J Clin Oncol. 1998;16:2825–2833.CrossRefGoogle Scholar
  13. 13.
    Hainsworth JD, Litchy S, Burris HA 3rd, et al. Rituximab as firstline and maintenance therapy for patients with indolent non-Hodgkin’s lymphoma.J Clin Oncol. 2002;20:4261–4267.CrossRefPubMedGoogle Scholar
  14. 14.
    Ghielmini M, Hsu Schmitz S-F, Cogliatti S, et al. Prolonged treatment with rituximab significantly improves event free survival and duration of response in patients with follicular lymphoma: a randomised SAKK Trial [abstract].Blood. 2002;100:161a. Abstract 604.Google Scholar
  15. 15.
    Vose JM, Wahl RL, Saleh M, et al. Multicenter phase II study of iodine-131 tositumomab for chemotherapy-relapsed/refractory low-grade and transformed low-grade B-cell non-Hodgkin’s lymphomas.J Clin Oncol. 2000;18:1316–1323.CrossRefPubMedGoogle Scholar
  16. 16.
    Witzig TE, Flinn IW, Gordon LI, et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma.J Clin Oncol. 2002;20:3262–3269.CrossRefPubMedGoogle Scholar
  17. 17.
    Kaminski MS, Zelenetz AD, Press OW, et al. Pivotal study of iodine I131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin’s lymphomas.J Clin Oncol. 2001;19:3918–3928.CrossRefPubMedGoogle Scholar
  18. 18.
    Czuczman MS. CHOP plus rituximab chemoimmunotherapy of indolent B-cell lymphoma.Semin Oncol. 1999;26(suppl 14):88–96.PubMedGoogle Scholar
  19. 19.
    Marcus R, Imrie K, Belch A, et al. An international multi-centre, randomized, open-label, phase III trial comparing rituximab added to CVP chemotherapy to CVP chemotherapy alone in untreated stage III/IV follicular non-Hodgkin’s lymphoma [abstract].Blood. 2003;102:28a. Abstract 87.Google Scholar
  20. 20.
    Byrd JC, Rai KR, Peterson BL, Appelbaum FR, Morrison VA, Kolitz JEA. The addition of rituximab to fludarabine significantly improves progression-free and overall survival in previously untreated chronic lymphocytic leukemia (CLL) patients [abstract].Blood. 2003;102:273a. Abstract 245.Google Scholar
  21. 21.
    Rohatiner AZ, Gregory WM, Peterson BA, Smalley RV. A meta- analysis of randomized trials evaluating the role of interferon as treatment for follicular lymphoma [abstract].Proc Am Soc Clin Oncol. 1998;17:4a. Abstract 11.Google Scholar
  22. 22.
    Bierman PJ, Vose JM, Anderson JR, Bishop MR, Kessinger A, Armitage JO. High-dose therapy with autologous hematopoietic rescue for follicular low-grade non-Hodgkin’s lymphoma.J Clin Oncol. 1997;15:445–450.CrossRefPubMedGoogle Scholar
  23. 23.
    Freedman AS, Neuberg D, Mauch P, et al. Long-term follow-up of autologous bone marrow transplantation in patients with relapsed follicular lymphoma.Blood. 1999;94:3325–3333.PubMedGoogle Scholar
  24. 24.
    Bierman PJ. Allogeneic bone marrow transplantation for lymphoma.Blood Rev. 2000;14:1–13.CrossRefPubMedGoogle Scholar
  25. 25.
    Vose JM, Bierman PJ, Weisenburger DD, et al. Autologous hematopoietic stem cell transplantation for mantle cell lymphoma.Biol Blood Marrow Transplant. 2000;6:640–645.CrossRefPubMedGoogle Scholar
  26. 26.
    Horning SJ, Negrin RS, Hoppe RT, et al. High-dose therapy and autologous bone marrow transplantation for follicular lymphoma in first complete or partial remission: results of a phase II clinical trial.Blood. 2001;97:404–409.CrossRefPubMedGoogle Scholar
  27. 27.
    O’Connor OA, Wright J, Moskowitz C, Macgregor-Cortelli B, Straus D, Horse-Grant D. Phase II clinical experience with the pro- teasome inhibitor bortezomib (formerly PS-341) in patients with indolent lymphoma [abstract].Proc Am Soc Clin Oncol. 2003;22: 2566. Abstract 2277.Google Scholar
  28. 28.
    Webb A, Cunningham D, Cotter F, et al. BCL-2 antisense therapy in patients with non-Hodgkin lymphoma.Lancet. 1997;349:1137–1141.CrossRefPubMedGoogle Scholar
  29. 29.
    Damle RN, Wasil T, Fais F, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia.Blood. 1999;94:1840–1847.PubMedGoogle Scholar
  30. 30.
    Crespo M, Bosch F, Villamor N, et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia.N Engl J Med. 2003;348:1764–1775.CrossRefPubMedGoogle Scholar
  31. 31.
    Wierda WG, O’Brien S, Faderl S, et al. Improved survival in patients with relapsed-refractory chronic lymphocytic leukemia (CLL) treated with fludarabine, cyclophosphamide, and rituximab (FCR) combination [abstract].Blood. 2003;102:100a. Abstract 373.Google Scholar
  32. 32.
    Hainsworth JD, Litchy S, Barton JH, et al. Single-agent rituximab as first-line and maintenance treatment for patients with chronic lymphocytic leukemia or small lymphocytic lymphoma: a phase II trial of the Minnie Pearl Cancer Research Network.J Clin Oncol. 2003;21:1746–1751.CrossRefPubMedGoogle Scholar
  33. 33.
    Tsang RW, Gospodarowicz MK, Pintilie M, et al. Localized mucosa-associated lymphoid tissue lymphoma treated with radiation therapy has excellent clinical outcome.J Clin Oncol. 2003;21:4157–4164.CrossRefGoogle Scholar
  34. 34.
    Thieblemont C, Berger F, Dumontet C, et al. Mucosa-associated lymphoid tissue lymphoma is a disseminated disease in one third of 158 patients analyzed.Blood. 2000;95:802–806.Google Scholar
  35. 35.
    Zucca E, Conconi A, Roggero E, Ascani S, Campo E, Capella C. Non-gastric MALT lymphomas: a survey of 369 European patients: the International Extranodal Lymphoma Study Group (IELSG) [abstract].Ann Oncol. 2000;11:4499. Abstract 4440.Google Scholar
  36. 36.
    Isaacson PG. Gastric MALT lymphoma: from concept to cure.Ann Oncol. 1999;10:637–645.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Fischbach W, Goebeler-Kolve M, Starostik P, Greiner A, Muller-Hermelink HK. Minimal residual low-grade gastric MALT-type lymphoma after eradication ofHelicobacter pylori.Lancet. 2002;360:547–548.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Schetelig J, Thiede C, Bornhauser M, et al. Evidence of a graft- versus-leukemia effect in chronic lymphocytic leukemia after reduced-intensity conditioning and allogeneic stem-cell transplan- tation: the Cooperative German Transplant Study Group.J Clin Oncol. 2003;21:2747–2753.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Liu H, Ruskon-Fourmestraux A, Lavergne-Slove A, et al. Resis- tance of t(11;18) positive gastric mucosa-associated lymphoid tis- sue lymphoma toHelicobacter pylori eradication therapy.Lancet. 2001;357:39–40.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Beutler E. Cladribine (2-chlorodeoxyadenosine).Lancet. 1992;340:952–956.CrossRefPubMedGoogle Scholar
  41. 41.
    Carson DA, Kaye J, Seegmiller JE. Lymphospecific toxicity in adenosine deaminase deficiency and purine nucleoside phosphory- lase deficiency: possible role of nucleoside kinase(s).Proc Natl AcadSci USA. 1977;74:5677–5681.CrossRefGoogle Scholar
  42. 42.
    Carson DA, Wasson DB, Kaye J, et al. Deoxycytidine kinase- mediated toxicity of deoxyadenosine analogs toward malignant human lymphoblasts in vitro and toward murine L1210 leukemia in vivo.Proc Natl Acad Sci USA. 1980;77:6865–6869.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Piro LD, Carrera CJ, Carson DA, Beutler E. Lasting remissions in hairy-cell leukemia induced by a single infusion of 2-chlorodeoxyadenosine.N Engl J Med. 1990;322:1117–1121.CrossRefPubMedGoogle Scholar
  44. 44.
    Tallman MS, Hakimian D, Variakojis D, et al. A single cycle of 2-chlorodeoxyadenosine results in complete remission in the major- ity of patients with hairy cell leukemia.Blood. 1992;80:2203–2209.PubMedGoogle Scholar
  45. 45.
    Juliusson G, Liliemark J. High complete remission rate from 2-chloro-2′-deoxyadenosine in previously treated patients with B-cell chronic lymphocytic leukemia: response predicted by rapid decrease of blood lymphocyte count.J Clin Oncol. 1993;11:679–689.CrossRefPubMedGoogle Scholar
  46. 46.
    Saven A, Lemon RH, Kosty M, Beutler E, Piro LD. 2-Chlorodeoxyadenosine activity in patients with untreated chronic lymphocytic leukemia.J Clin Oncol. 1995;13:570–574.CrossRefPubMedGoogle Scholar
  47. 47.
    Barton K, Larson RA, O’Brien S, Ratain MJ. Rapid response of B-cell prolymphocytic leukemia to 2-chlorodeoxyadenosine.J Clin Oncol. 1992;10:1821.CrossRefPubMedGoogle Scholar
  48. 48.
    Kay AC, Saven A, Carrera CJ, et al. 2-Chlorodeoxyadenosine treat- ment of low-grade lymphomas.J Clin Oncol. 1992;10:371–377.CrossRefPubMedGoogle Scholar
  49. 49.
    Hoffman M, Tallman MS, Hakimian D, et al. 2-Chlorodeoxyadenosine is an active salvage therapy in advanced indolent non-Hodgkin’s lymphoma.J Clin Oncol. 1994;12:788–792.CrossRefPubMedGoogle Scholar
  50. 50.
    Saven A, Emanuele S, Kosty M, Koziol J, Ellison D, Piro L. 2-Chlorodeoxyadenosine activity in patients with untreated, indolent non-Hodgkin’s lymphoma.Blood. 1995;86:1710–1716.PubMedGoogle Scholar
  51. 51.
    Tobinai K, Ogura M, Hotta T, et al. Phase I study of cladribine (2-chlorodeoxyadenosine) in lymphoid malignancies: Cladribine Study Group.Jpn J Clin Oncol. 1997;27:146–153.CrossRefPubMedGoogle Scholar
  52. 52.
    Tobinai K, Kohno A, Shimada Y, et al. Toxicity grading criteria of the Japan Clinical Oncology Group: the Clinical Trial Review Committee of the Japan Clinical Oncology Group.Jpn J Clin Oncol. 1993;23:250–257.CrossRefPubMedGoogle Scholar
  53. 53.
    Cheson BD, Vena DA, Foss FM, Sorensen JM. Neurotoxicity of purine analogs: a review.J Clin Oncol. 1994;12:2216–2228.CrossRefPubMedGoogle Scholar
  54. 54.
    Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma: a report from the Lymphoma Study Group (1984-87).Br J Haematol. 1991;79:428–437.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Saven A, Carrera CJ, Carson DA, Beutler E, Piro LD. 2-Chlorodeoxyadenosine: an active agent in the treatment of cutaneous T-cell lymphoma.Blood. 1992;80:587–592.PubMedGoogle Scholar
  56. 56.
    O’Brien S, Kurzrock R, Duvic M, et al. 2-Chlorodeoxyadenosine therapy in patients with T-cell lymphoproliferative disorders.Blood. 1994;84:733–738.PubMedGoogle Scholar
  57. 57.
    Kuzel TM, Hurria A, Samuelson E, et al. Phase II trial of 2-chlorodeoxyadenosine for the treatment of cutaneous T-cell lymphoma [see comments].Blood. 1996;87:906–911.PubMedGoogle Scholar
  58. 58.
    Seto S, Carrera CJ, Kubota M, Wasson DB, Carson DA. Mechanism of deoxyadenosine and 2-chlorodeoxyadenosine toxicity to nondividing human lymphocytes.J Clin Invest. 1985;75:377–383.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Tobinai K, Uike N, Saburi Y, et al. Phase II study of cladribine (2-chlorodeoxyadenosine) in relapsed or refractory adult T-cell leukemia-lymphoma.Int J Hematol. 2003;77:512–517.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Tobinai K, Kobayashi Y, Morishima Y. Prolonged cytopenia and myelodysplastic syndrome after cladribine treatment in relapsed patients with indolent non-Hodgkin’s lymphoma: results of Japanese phase II study [abstract].Proc Am Soc Clin Oncol. 2001;20: 2228b. Abstract 2664.Google Scholar
  61. 61.
    Cheson BD, Vena DA, Barrett J, Freidlin B. Second malignancies as a consequence of nucleoside analog therapy for chronic lymphoid leukemias.J Clin Oncol. 1999;17:2454–2460.CrossRefPubMedGoogle Scholar
  62. 62.
    Rummel MJ, Chow KU, Jager E, et al. Intermittent 2-hour-infusion of cladribine as first-line therapy or in first relapse of progressive advanced low-grade and mantle cell lymphomas.Leuk Lymphoma. 1999;35:129–138.CrossRefPubMedGoogle Scholar
  63. 63.
    Hickish T, Serafinowski P, Cunningham D, et al. 2-Chlorodeoxyadenosine: evaluation of a novel predominantly lymphocyte selective agent in lymphoid malignancies.Br J Cancer. 1993;67:139–143.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Dimopoulos MA, Weber D, Delasalle KB, Keating M, Alexanian R. Treatment of Waldenstrom’s macroglobulinemia resistant to standard therapy with 2-chlorodeoxyadenosine: identification of prognostic factors.Ann Oncol. 1995;6:49–52.CrossRefPubMedGoogle Scholar
  65. 65.
    Liliemark J, Juliusson G Cellular pharmacokinetics of 2-chloro-2-deoxyadenosine nucleotides: comparison of intermittent and continuous intravenous infusion and subcutaneous and oral administration in leukemia patients.Clin Cancer Res. 1995;1:385–390.PubMedGoogle Scholar
  66. 66.
    Liliemark J, Albertioni F, Hassan M, Juliusson G. On the bioavailability of oral and subcutaneous 2-chloro-2-deoxyadenosine in humans: alternative routes of administration.J Clin Oncol. 1992;10: 1514–1518.CrossRefPubMedGoogle Scholar
  67. 67.
    Juliusson G, Heldal D, Hippe E, et al. Subcutaneous injections of 2-chlorodeoxyadenosine for symptomatic hairy cell leukemia.J Clin Oncol. 1995;13:989–995.CrossRefPubMedGoogle Scholar
  68. 68.
    Goodman GR, Burian C, Koziol JA, Saven A. Extended follow-up of patients with hairy cell leukemia after treatment with cladribine.J Clin Oncol. 2003;21:891–896.CrossRefPubMedGoogle Scholar
  69. 69.
    Kurzrock R, Strom SS, Estey E, et al. Second cancer risk in hairy cell leukemia: analysis of 350 patients.J Clin Oncol. 1997;15:1803–1810.CrossRefPubMedGoogle Scholar
  70. 70.
    Chow KU, Rummel MJ, Weidmann E, et al. Induction of apoptosis by 2-chloro-2-deoxyadenosine (2-CdA) alone and in combination with other cytotoxic drugs: synergistic effects on normal and neoplastic lymphocytes by addition of doxorubicin and mitoxantrone.Leuk Lymphoma. 2000;36:559–567.CrossRefPubMedGoogle Scholar
  71. 71.
    Saven A, Lee T, Kosty M, Piro L. Cladribine and mitoxantrone dose escalation in indolent non-Hodgkin’s lymphoma.J Clin Oncol. 1996;14:2139–2144.CrossRefPubMedGoogle Scholar
  72. 72.
    Betticher DC, von Rohr A, Ratschiller D, et al. Fewer infections, but maintained antitumor activity with lower-dose versus standard-dose cladribine in pretreated low-grade non-Hodgkin’s lymphoma.J Clin Oncol. 1998;16:850–858.CrossRefPubMedGoogle Scholar
  73. 73.
    Betticher DC, Ratschiller D, Hsu Schmitz SF, et al. Reduced dose of subcutaneous cladribine induces identical response rates but decreased toxicity in pretreated chronic lymphocytic leukaemia: Swiss Group for Clinical Cancer Research (SAKK).Ann Oncol. 1998;9:721–726.CrossRefPubMedGoogle Scholar
  74. 74.
    Robak T, Gora-Tybor J, Urbanska-Rys H, Krykowski E. Combination regimen of 2-chlorodeoxyadenosine (cladribine), mitoxantrone and dexamethasone (CMD) in the treatment of refractory and recurrent low grade non-Hodgkin’s lymphoma.Leuk Lymphoma. 1999;32:359–363.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2004

Authors and Affiliations

  • James O. Armitage
    • 1
  • Kensei Tobinai
    • 2
  • Dieter Hoelzer
    • 3
  • Mathias J. Rummel
    • 3
  1. 1.Section of Oncology/HematologyUniversity of Nebraska Medical Center, OmahaNebraskaUSA
  2. 2.Hematology DivisionNational Cancer Center HospitalTokyoJapan
  3. 3.Department of Internal Medicine, Hematology/OncologyUniversity HospitalFrankfurt/MainGermany

Personalised recommendations