International Journal of Hematology

, Volume 79, Issue 5, pp 420–433 | Cite as

Biology of Chronic Myeloid Leukemia and Possible Therapeutic Approaches to Imatinib-Resistant Disease

  • Chikashi Yoshida
  • Junia V. Melo


Chronic myeloid leukemia (CML) is a stem cell disorder caused by a constitutively activated tyrosine kinase, the Bcr-Abl oncoprotein. An inhibitor of this tyrosine kinase, imatinib mesylate, is rapidly becoming the first-line therapy for CML. However, the development of resistance to this drug is a frequent setback, particularly in patients in advanced phases of the disease. Several mechanisms of resistance have been described, the most frequent of which are amplification and/or mutations of the BCR-ABL gene. To overcome resistance, several approaches have been studied in vitro and in vivo. They include dose escalation of imatinib, combination of imatinib with chemotherapeutic drugs, alternative Bcr-Abl inhibitors, inhibitors of kinases downstream of Bcr-Abl, farnesyl and geranylgeranyl transferase inhibitors, histone deacetylase, proteasome and cyclin-dependent kinase inhibitors, arsenic trioxide, hypomethylating agents, troxacitabine, targeting Bcr-Abl messenger RNA, and immunomodulatory strategies. It is important to understand that these approaches differ in efficiency, which is often dependent on the mechanisms of resistance. Further investigations into the molecular mechanisms of disease and how to specifically target the abnormal processes will guide the design of new treatment modalities in future clinical trials.

Key words

Chronic myeloid leukemia Bcr-Abl Imatinib mesylate Drug resistance Kinase inhibitors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science. 1960;132:1497.Google Scholar
  2. 2.
    Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining [letter]. Nature. 1973;243:290–293.PubMedCrossRefGoogle Scholar
  3. 3.
    Barnes DJ, Melo JV. Cytogenetic and molecular genetic aspects of chronic myeloid leukaemia. Acta Haematol. 2002;108:180–202.PubMedCrossRefGoogle Scholar
  4. 4.
    Gordon MY, Dowding CR, Riley GP, Goldman JM, Greaves MF. Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature. 1987;328:342–344.CrossRefGoogle Scholar
  5. 5.
    Bedi A, Zehnbauer BA, Barber JP, Sharkis SJ, Jones RJ. Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood. 1994;83:2038–2044.Google Scholar
  6. 6.
    Buchdunger E, Zimmermann J, Mett H, et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 1996;56:100–104.PubMedGoogle Scholar
  7. 7.
    Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2:561–566.PubMedCrossRefGoogle Scholar
  8. 8.
    Deininger MWN, Goldman JM, Lydon NB, Melo JV. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL positive cells. Blood. 1997;90:3691–3698.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood. 2000;96:925–932.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–1037.PubMedCrossRefGoogle Scholar
  11. 11.
    Kantarjian H, Sawyers C, Hochhaus A, et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med. 2002;346:645–652.CrossRefGoogle Scholar
  12. 12.
    O’Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronicphase chronic myeloid leukemia. N Engl J Med. 2003;348:994–1004.CrossRefGoogle Scholar
  13. 13.
    Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344:1038–1042.CrossRefGoogle Scholar
  14. 14.
    Wadhwa J, Szydlo RM, Apperley JF, et al. Factors affecting duration of survival after onset of blastic transformation of chronic myeloid leukemia. Blood. 2002;99:2304–2309.PubMedCrossRefGoogle Scholar
  15. 15.
    Mahon FX, Deininger MW, Schultheis B, et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood. 2000;96:1070–1079.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Le Coutre P, Tassi E, Varella-Garcia M, et al. Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood. 2000;95:1758–1766.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Weisberg E, Griffin JD. Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood. 2000;95:3498–3505.PubMedGoogle Scholar
  18. 18.
    Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293:876–880.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Campbell LJ, Patsouris C, Rayeroux KC, Somana K, Januszewicz EH, Szer J. BCR/ABL amplification in chronic myelocytic leukemia blast crisis following imatinib mesylate administration. Cancer Genet Cytogenet. 2002;139:30–33.PubMedCrossRefGoogle Scholar
  20. 20.
    Hochhaus A, Kreil S, Corbin AS, et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia. 2002;16:2190–2196.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Mahon FX, Belloc F, Lagarde V, et al. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood. 2003;101:2368–2373.PubMedCrossRefGoogle Scholar
  22. 22.
    Arceci RJ. Clinical significance of P-glycoprotein in multidrug resistance malignancies. Blood. 1993;81:2215–2222.PubMedGoogle Scholar
  23. 23.
    Vossebeld PJ, Sonneveld P. Reversal of multidrug resistance in hematological malignancies. Blood Rev. 1999;13:67–78.PubMedCrossRefGoogle Scholar
  24. 24.
    Carulli G, Petrini M, Marini A, Ambrogi F. P-glycoprotein in acute nonlymphoblastic leukemia and in the blastic crisis of myeloid leukemia. N Engl J Med. 1988;319:797–798.PubMedGoogle Scholar
  25. 25.
    Kuwazuru Y, Yoshimura A, Hanada S, et al. Expression of the multidrug transporter, P-glycoprotein, in chronic myelogenous leukaemia cells in blast crisis. Br J Haematol. 1990;74:24–29.PubMedCrossRefGoogle Scholar
  26. 26.
    Ferrao PT, Frost MJ, Siah SP, Ashman LK. Overexpression of P-glycoprotein in K562 cells does not confer resistance to the growth inhibitory effects of imatinib (STI571) in vitro. Blood. 2003;102:4499–4503.PubMedCrossRefGoogle Scholar
  27. 27.
    Barthe C, Cony-Makhoul P, Melo JV, Reiffers J, Mahon FX. Roots of clinical resistance to STI-571 cancer therapy. Science. 2001;293:2163.PubMedCrossRefGoogle Scholar
  28. 28.
    Hochhaus A, Kreil S, Corbin A, et al. Roots of clinical resistance to STI-571 cancer therapy. Science. 2001;293:2163.PubMedCrossRefGoogle Scholar
  29. 29.
    von Bubnoff N, Schneller F, Peschel C, Duyster J. BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet. 2002;359:487–491.CrossRefGoogle Scholar
  30. 30.
    Branford S, Rudzki Z, Walsh S, et al. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood. 2002;99:3472–3475.CrossRefGoogle Scholar
  31. 31.
    Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N, et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can preexist to the onset of treatment. Blood. 2002;100:1014–1018.PubMedCrossRefGoogle Scholar
  32. 32.
    Shah NP, Nicoll JM, Nagar B, et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell. 2002;2:117–125.PubMedCrossRefGoogle Scholar
  33. 33.
    Branford S, Rudzki Z, Walsh S, et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood. 2003;102:276–283.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hofmann WK, Jones LC, Lemp NA, et al. Ph(+) acute lymphoblastic leukemia resistant to the tyrosine kinase inhibitor STI571 has a unique BCR-ABL gene mutation. Blood. 2002;99:1860–1862.CrossRefGoogle Scholar
  35. 35.
    Goldman JM, Melo JV. Chronic myeloid leukemia: advances in biology and new approaches to treatment. N Engl J Med. 2003;349:1451–1464.PubMedCrossRefGoogle Scholar
  36. 36.
    Tauchi T, Ohyashiki K. Molecular mechanisms of resistance of leukemia to imatinib mesylate. Leuk Res. 2004;28(suppl 1):39–45.CrossRefGoogle Scholar
  37. 37.
    Roche-Lestienne C, Preudhomme C. Mutations in the ABL kinase domain pre-exist the onset of imatinib treatment. Semin Hematol. 2003;40:80–82.PubMedCrossRefGoogle Scholar
  38. 38.
    Blagosklonny MV. STI-571 must select for drug-resistant cells but “no cell breathes fire out of its nostrils like a dragon.” Leukemia. 2002;16:570–572.CrossRefGoogle Scholar
  39. 39.
    Luzzatto L, Melo JV. Acquired resistance to imatinib mesylate: selection for pre-existing mutant cells. Blood. 2002;100:1105.CrossRefGoogle Scholar
  40. 40.
    Hofmann WK, Komor M, Wassmann B, et al. Presence of the BCR-ABL mutation Glu255Lys prior to STI571 (imatinib) treatment in patients with Ph+ acute lymphoblastic leukemia. Blood. 2003;102:659–661.PubMedCrossRefGoogle Scholar
  41. 41.
    Corbin AS, La Rosee P, Stoffregen EP, Druker BJ, Deininger MW. Several Bcr-Abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib. Blood. 2003;101:4611–4614.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Barnes DJ, Goldman JM, Melo JV. BCR-ABL expression levels determine the rate of development of resistance to imatinib mesylate (Gleevec). Blood. 2003;102:415a.Google Scholar
  43. 43.
    Kantarjian HM, Talpaz M, O’Brien S, et al. Dose escalation of imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia. Blood. 2003;101:473–475.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Tipping AJ, Mahon FX, Lagarde V, Goldman JM, Melo JV. Restoration of sensitivity to STI571 in STI571-resistant chronic myeloid leukemia cells. Blood. 2001;98:3864–3867.PubMedCrossRefGoogle Scholar
  45. 45.
    Thiesing JT, Ohno-Jones S, Kolibaba KS, Druker BJ. Efficacy of STI571, an abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against bcr-abl-positive cells. Blood. 2000;96:3195–3199.Google Scholar
  46. 46.
    Topaly J, Fruehauf S, Ho AD, Zeller WJ. Rationale for combination therapy of chronic myelogenous leukaemia with imatinib and irradiation or alkylating agents: implications for pretransplant conditioning. Br J Cancer. 2002;86:1487–1493.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Fang G, Kim CN, Perkins CL, et al. CGP57148B (STI-571) induces differentiation and apoptosis and sensitizes Bcr-Abl-positive human leukemia cells to apoptosis due to antileukemic drugs. Blood. 2000;96:2246–2253.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Kano Y, Akutsu M, Tsunoda S, et al. In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemic agents. Blood. 2001;97:1999–2007.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Topaly J, Zeller WJ, Fruehauf S. Synergistic activity of the new ABL-specific tyrosine kinase inhibitor STI571 and chemotherapeutic drugs on BCR-ABL-positive chronic myelogenous leukemia cells. Leukemia. 2001;15:342–347.CrossRefGoogle Scholar
  50. 50.
    Scappini B, Onida F, Kantarjian HM, et al. In vitro effects of STI 571-containing drug combinations on the growth of Philadelphia-positive chronic myelogenous leukemia cells. Cancer. 2002;94:2653–2662.PubMedCrossRefGoogle Scholar
  51. 51.
    Gardembas M, Rousselot P, Tulliez M, et al. Results of a prospective phase II study combining imatinib mesylate and cytarabine for the treatment of Philadelphia-positive patients with chronic myelogenous leukemia in chronic phase. Blood. 2003;102:4298–4305.PubMedCrossRefGoogle Scholar
  52. 52.
    Tipping AJ, Mahon FX, Zafirides G, Lagarde V, Goldman JM, Melo JV. Drug responses of imatinib mesylate-resistant cells: synergism of imatinib with other chemotherapeutic drugs. Leukemia. 2002;16:2349–2357.PubMedCrossRefGoogle Scholar
  53. 53.
    Kaur G, Gazit A, Levitzki A, Stowe E, Cooney DA, Sausville EA. Tyrphostin induced growth inhibition: correlation with effect on p210bcr-abl autokinase activity in K562 chronic myelogenous leukemia. Anticancer Drugs. 1994;5:213–222.PubMedCrossRefGoogle Scholar
  54. 54.
    Svingen PA, Tefferi A, Kottke TJ, et al. Effects of the bcr/abl kinase inhibitors AG957 and NSC 680410 on chronic myelogenous leukemia cells in vitro. Clin Cancer Res. 2000;6:237–249.Google Scholar
  55. 55.
    Mow BM, Chandra J, Svingen PA, et al. Effects of the Bcr/abl kinase inhibitors STI571 and adaphostin (NSC 680410) on chronic myelogenous leukemia cells in vitro. Blood. 2002;99:664–671.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Nimmanapalli R, O’Bryan E, Bhalla K. Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res. 2001;61:1799–1804.PubMedGoogle Scholar
  57. 57.
    An WG, Schulte TW, Neckers LM. The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ. 2000;11:355–360.PubMedGoogle Scholar
  58. 58.
    Blagosklonny MV, Fojo T, Bhalla KN, et al. The Hsp90 inhibitor geldanamycin selectively sensitizes Bcr-Abl-expressing leukemia cells to cytotoxic chemotherapy. Leukemia. 2001;15:1537–1543.PubMedCrossRefGoogle Scholar
  59. 59.
    Gorre ME, Ellwood-Yen K, Chiosis G, Rosen N, Sawyers CL. BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood. 2002;100:3041–3044.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Topaly J, Schad M, Laufs S, Melo JV, Zeller WJ, Fruehauf S. Crossresistance of imatinib mesylate and 17-AAG in imatinib-resistant cells that overexpress BCR-ABL. Br J Haematol. 2003;121:672–673.PubMedCrossRefGoogle Scholar
  61. 61.
    Needleman SW, Gutheil JC, Kapil V, Mane SM. Infrequent ras activation in chronic myelogenous leukemia (CML): activating 61st codon mutation in the CML-derived cell line, IM-9. Leukemia. 1989;3:827–829.PubMedGoogle Scholar
  62. 62.
    Watzinger F, Gaiger A, Karlic H, Becher R, Pillwein K, Lion T. Absence of N-ras mutations in myeloid and lymphoid blast crisis of chronic myeloid leukemia. Cancer Res. 1994;54:3934–3938.PubMedGoogle Scholar
  63. 63.
    Druker B, Okuda K, Matulonis U, Salgia R, Roberts T, Griffin JD. Tyrosine phosphorylation of rasGAP and associated proteins in chronic myelogenous leukemia cell lines. Blood. 1992;79:2215–2220.PubMedGoogle Scholar
  64. 64.
    Sakai N, Ogiso Y, Fujita H, Watari H, Koike T, Kuzumaki N. Induction of apoptosis by a dominant negative H-RAS mutant (116Y) in K562 cells. Exp Cell Res. 1994;215:131–136.PubMedCrossRefGoogle Scholar
  65. 65.
    Adjei AA, Erlichman C, Davis JN, et al. A phase I trial of the farnesyl transferase inhibitor SCH66336: evidence for biological and clinical activity. Cancer Res. 2000;60:1871–1877.PubMedGoogle Scholar
  66. 66.
    Awada A, Eskens FA, Piccart M, et al. Phase I and pharmacological study of the oral farnesyltransferase inhibitor SCH 66336 given once daily to patients with advanced solid tumours. Eur J Cancer. 2002;38:2272–2278.PubMedCrossRefGoogle Scholar
  67. 67.
    Sharma S, Kemeny N, Kelsen DP, et al. A phase II trial of farnesyl protein transferase inhibitor SCH 66336, given by twice-daily oral administration, in patients with metastatic colorectal cancer refractory to 5-fluorouracil and irinotecan. Ann Oncol. 2002;13:1067–1071.PubMedCrossRefGoogle Scholar
  68. 68.
    Reichert A, Heisterkamp N, Daley GQ, Groffen J. Treatment of Bcr/Abl-positive acute lymphoblastic leukemia in P190 transgenic mice with the farnesyl transferase inhibitor SCH66336. Blood. 2001;97:1399–1403.PubMedCrossRefGoogle Scholar
  69. 69.
    Peters DG, Hoover RR, Gerlach MJ, et al. Activity of the farnesyl protein transferase inhibitor SCH66336 against BCR/ABL-induced murine leukemia and primary cells from patients with chronic myeloid leukemia. Blood. 2001;97:1404–1412.PubMedCrossRefGoogle Scholar
  70. 70.
    Hoover RR, Mahon FX, Melo JV, Daley GQ. Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood. 2002;100:1068–1071.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Karp JE, Lancet JE, Kaufmann SH, et al. Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase 1 clinical-laboratory correlative trial. Blood. 2001;97:3361–3369.PubMedCrossRefGoogle Scholar
  72. 72.
    Cortes J, AlBitar M, Thomas D, et al. Efficacy of the farnesyl transferase inhibitor R115777 in chronic myeloid leukemia and other hematologic malignancies. Blood. 2003;101:1692–1697.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kuroda J, Kimura S, Segawa H, et al. The third-generation bisphosphonate zoledronate synergistically augments the anti-Ph+ leukemia activity of imatinib mesylate. Blood. 2003;102:2229–2235.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Chuah C, Tipping AJ, Goldman JM, Melo JV. Zoledronate is active against imatinib mesylate-resistant chronic myeloid leukemia cell lines and synergistic/additive when combined with imatinib mesylate. Blood. 2003;102:19a.Google Scholar
  75. 75.
    de Groot RP, Raaijmakers JA, Lammers JW, Jove R, Koenderman L. STAT5 activation by BCR-Abl contributes to transformation of K562 leukemia cells. Blood. 1999;94:1108–1112.PubMedGoogle Scholar
  76. 76.
    Kraker AJ, Hartl BG, Amar AM, Barvian MR, Showalter HD, Moore CW. Biochemical and cellular effects of c-Src kinase-selective pyrido[2, 3-d]pyrimidine tyrosine kinase inhibitors. Biochem Pharmacol. 2000;60:885–898.PubMedCrossRefGoogle Scholar
  77. 77.
    Dorsey JF, Jove R, Kraker AJ, Wu J. The pyrido[2,3-d]pyrimidine derivative PD180970 inhibits p210Bcr-Abl tyrosine kinase and induces apoptosis of K562 leukemic cells. Cancer Res. 2000;60:3127–3131.PubMedGoogle Scholar
  78. 78.
    Huang M, Dorsey JF, Epling-Burnette PK, et al. Inhibition of Bcr-Abl kinase activity by PD180970 blocks constitutive activation of Stat5 and growth of CML cells. Oncogene. 2002;21:8804–8816.PubMedCrossRefGoogle Scholar
  79. 79.
    Nimmanapalli R, O’Bryan E, Huang M, et al. Molecular characterization and sensitivity of STI-571 (imatinib mesylate, Gleevec)-resistant, Bcr-Abl-positive, human acute leukemia cells to SRC kinase inhibitor PD180970 and 17-allylamino-17-demethoxygeldanamycin. Cancer Res. 2002;62:5761–5769.PubMedGoogle Scholar
  80. 80.
    La Rosee P, Corbin AS, Stoffregen EP, Deininger MW, Druker BJ. Activity of the Bcr-Abl kinase inhibitor PD180970 against clinically relevant Bcr-Abl isoforms that cause resistance to imatinib mesylate (Gleevec, STI571). Cancer Res. 2002;62:7149–7153.PubMedGoogle Scholar
  81. 81.
    Wisniewski D, Lambek CL, Liu C, et al. Characterization of potent inhibitors of the Bcr-Abl and the c-kit receptor tyrosine kinases. Cancer Res. 2002;62:4244–4255.PubMedGoogle Scholar
  82. 82.
    von Bubnoff N, Veach DR, Miller WT, et al. Inhibition of wild-type and mutant Bcr-Abl by pyrido-pyrimidine-type small molecule kinase inhibitors. Cancer Res. 2003;63:6395–6404.Google Scholar
  83. 83.
    Huron DR, Gorre ME, Kraker AJ, Sawyers CL, Rosen N, Moasser MM. A novel pyridopyrimidine inhibitor of abl kinase is a picomolar inhibitor of Bcr-abl-driven K562 cells and is effective against STI571-resistant Bcr-abl mutants. Clin Cancer Res. 2003;9:1267–1273.PubMedGoogle Scholar
  84. 84.
    Skorski T, Kanakaraj P, Nieborowska-Skorska M, et al. Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood. 1995;86:726–736.PubMedGoogle Scholar
  85. 85.
    Klejman A, Rushen L, Morrione A, Slupianek A, Skorski T. Phosphatidylinositol-3 kinase inhibitors enhance the anti-leukemia effect of STI571. Oncogene. 2002;21:5868–5876.PubMedCrossRefGoogle Scholar
  86. 86.
    Ly C, Arechiga AF, Melo JV, Walsh CM, Ong ST. Bcr-Abl kinase modulates the translation regulators ribosomal protein S6 and 4E-BP1 in chronic myelogenous leukemia cells via the mammalian target of rapamycin. Cancer Res. 2003;63:5716–5722.PubMedGoogle Scholar
  87. 87.
    Kuypers DR, Herelixka A, Vanrenterghem Y. Clinical use of rapamycin in renal allograft recipients identifies its relevant toxicity profile and raises unsolved questions: a single-center experience. Transplant Proc. 2003;35:138S-142S.PubMedCrossRefGoogle Scholar
  88. 88.
    Dan S, Naito M, Tsuruo T. Selective induction of apoptosis in Philadelphia chromosome-positive chronic myelogenous leukemia cells by an inhibitor of BCR-ABL tyrosine kinase, CGP 57148. Cell Death Differ. 1998;5:710–715.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kang CD, Yoo SD, Hwang BW, et al. The inhibition of ERK/ MAPK not the activation of JNK/SAPK is primarily required to induce apoptosis in chronic myelogenous leukemic K562 cells. Leuk Res. 2000;24:527–534.PubMedCrossRefGoogle Scholar
  90. 90.
    Yu C, Krystal G, Varticovksi L, et al. Pharmacologic mitogen-activated protein/extracellular signal-regulated kinase kinase/ mitogen-activated protein kinase inhibitors interact synergistically with STI571 to induce apoptosis in Bcr/Abl-expressing human leukemia cells. Cancer Res. 2002;62:188–199.PubMedGoogle Scholar
  91. 91.
    Chu S, Holtz M, Gupta M, Bhatia R. BCR/ABL kinase inhibition by imatinib mesylate enhances MAP kinase activity in chronic myelogenous leukemia CD34+ cells. Blood. 2004;103:3167–3174.PubMedCrossRefGoogle Scholar
  92. 92.
    Ward AC, Touw I, Yoshimura A. The Jak-Stat pathway in normal and perturbed hematopoiesis. Blood. 2000;95:19–29.PubMedGoogle Scholar
  93. 93.
    Wilson-Rawls J, Xie S, Liu J, Laneuville P, Arlinghaus RB. P210 Bcr-Abl interacts with the interleukin 3 receptor beta(c) subunit and constitutively induces its tyrosine phosphorylation. Cancer Res. 1996;56:3426–3430.PubMedGoogle Scholar
  94. 94.
    Wilson-Rawls J, Liu J, Laneuville P, Arlinghaus RB. P210 Bcr-Abl interacts with the interleukin-3 beta c subunit and constitutively activates Jak2. Leukemia. 1997;11(suppl 3):428–431.PubMedGoogle Scholar
  95. 95.
    Xie S, Wang Y, Liu J, et al. Involvement of Jak2 tyrosine phosphorylation in Bcr-Abl transformation. Oncogene. 2001;20:6188–6195.PubMedCrossRefGoogle Scholar
  96. 96.
    Meydan N, Grunberger T, Dadi H, et al. Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature. 1996;379:645–648.PubMedCrossRefGoogle Scholar
  97. 97.
    Sun X, Layton JE, Elefanty A, Lieschke GJ. Comparison of effects of the tyrosine kinase inhibitors AG957, AG490, and STI571 on BCR-ABL-expressing cells, demonstrating synergy between AG490 and STI571. Blood. 2001;97:2008–2015.PubMedCrossRefGoogle Scholar
  98. 98.
    Marley SB, Davidson RJ, Goldman JM, Gordon MY. Effects of combinations of therapeutic agents on the proliferation of progenitor cells in chronic myeloid leukaemia. Br J Haematol. 2002;116:162–165.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Griffith TS, Lynch DH. TRAIL: a molecule with multiple receptors and control mechanisms. Curr Opin Immunol. 1998;10:559–563.PubMedCrossRefGoogle Scholar
  100. 100.
    Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 1995;3:673–682.PubMedCrossRefGoogle Scholar
  101. 101.
    Thomas WD, Hersey P. TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in Fas ligand-resistant melanoma cells and mediates CD4 T cell killing of target cells. J Immunol. 1998;161:2195–2200.PubMedGoogle Scholar
  102. 102.
    Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science. 1997;277:815–818.PubMedCrossRefGoogle Scholar
  103. 103.
    Nimmanapalli R, Porosnicu M, Nguyen D, et al. Cotreatment with STI-571 enhances tumor necrosis factor alpha-related apoptosis-inducing ligand (TRAIL or apo-2L)-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Clin Cancer Res. 2001;7:350–357.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Uno K, Inukai T, Kayagaki N, et al. TNF-related apoptosis-inducing ligand (TRAIL) frequently induces apoptosis in Philadelphia chromosome-positive leukemia cells. Blood. 2003;101:3658–3667.PubMedCrossRefGoogle Scholar
  105. 105.
    Cress WD, Seto E. Histone deacetylases, transcriptional control, and cancer. J Cell Physiol. 2000;184:1–16.PubMedCrossRefGoogle Scholar
  106. 106.
    Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA. 2000;97:10014–10019.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst. 2000;92:1210–1216.PubMedCrossRefGoogle Scholar
  108. 108.
    Nimmanapalli R, Fuino L, Stobaugh C, Richon V, Bhalla K. Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood. 2003;101:3236–3239.PubMedCrossRefGoogle Scholar
  109. 109.
    Yu C, Rahmani M, Almenara J, et al. Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and -resistant Bcr/Abl+ human myeloid leukemia cells. Cancer Res. 2003;63:2118–2126.PubMedGoogle Scholar
  110. 110.
    Nimmanapalli R, Fuino L, Bali P, et al. Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or-refractory chronic myelogenous leukemia-blast crisis cells. Cancer Res. 2003;63:5126–5135.PubMedGoogle Scholar
  111. 111.
    Almond JB, Cohen GM. The proteasome: a novel target for cancer chemotherapy. Leukemia. 2002;16:433–443.PubMedCrossRefGoogle Scholar
  112. 112.
    King RW, Deshaies RJ, Peters JM, Kirschner MW. How proteolysis drives the cell cycle. Science. 1996;274:1652–1659.PubMedCrossRefGoogle Scholar
  113. 113.
    Jonuleit T, van der KH, Miething C, et al. Bcr-Abl kinase down-regulates cyclin-dependent kinase inhibitor p27 in human and murine cell lines. Blood. 2000;96:1933–1939.PubMedGoogle Scholar
  114. 114.
    Reuther JY, Reuther GW, Cortez D, Pendergast AM, Baldwin AS Jr. A requirement for NF-kappaB activation in Bcr-Abl-mediated transformation. Genes Dev. 1998;12:968–981.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Hamdane M, David-Cordonnier MH, D’Halluin JC. Activation of p65 NF-kappaB protein by p210BCR-ABL in a myeloid cell line (P210BCR-ABL activates p65 NF-kappaB). Oncogene. 1997;15:2267–2275.PubMedCrossRefGoogle Scholar
  116. 116.
    Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 1999;59:2615–2622.PubMedGoogle Scholar
  117. 117.
    Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003;348:2609–2617.PubMedCrossRefGoogle Scholar
  118. 118.
    Gatto S, Scappini B, Pham L, et al. The proteasome inhibitor PS-341 inhibits growth and induces apoptosis in Bcr/Abl-positive cell lines sensitive and resistant to imatinib mesylate. Haematologica. 2003;88:853–863.PubMedGoogle Scholar
  119. 119.
    Yu C, Rahmani M, Conrad D, Subler M, Dent P, Grant S. The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood. 2003;102:3765–3774.PubMedCrossRefGoogle Scholar
  120. 120.
    Arguello F, Alexander M, Sterry JA, et al. Flavopiridol induces apoptosis of normal lymphoid cells, causes immunosuppression, and has potent antitumor activity in vivo against human leukemia and lymphoma xenografts. Blood. 1998;91:2482–2490.PubMedGoogle Scholar
  121. 121.
    Yu C, Krystal G, Dent P, Grant S. Flavopiridol potentiates STI571-induced mitochondrial damage and apoptosis in BCR-ABL-positive human leukemia cells. Clin Cancer Res. 2002;8:2976–2984.PubMedGoogle Scholar
  122. 122.
    Shen ZX, Chen GQ, Ni JH, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL), II: clinical efficacy and pharmacokinetics in relapsed patients. Blood. 1997;89:3354–3360.PubMedGoogle Scholar
  123. 123.
    Puccetti E, Guller S, Orleth A, et al. BCR-ABL mediates arsenic trioxide-induced apoptosis independently of its aberrant kinase activity. Cancer Res. 2000;60:3409–3413.PubMedGoogle Scholar
  124. 124.
    Perkins C, Kim CN, Fang G, Bhalla KN. Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2, or Bcl-x(L). Blood. 2000;95:1014–1022.PubMedGoogle Scholar
  125. 125.
    Nimmanapalli R, Bali P, O’Bryan E, et al. Arsenic trioxide inhibits translation of mRNA of bcr-abl, resulting in attenuation of Bcr-Abl levels and apoptosis of human leukemia cells. Cancer Res. 2003;63:7950–7958.PubMedGoogle Scholar
  126. 126.
    La Rosee P, Johnson K, O’Dwyer ME, Druker BJ. In vitro studies of the combination of imatinib mesylate (Gleevec) and arsenic trioxide (Trisenox) in chronic myelogenous leukemia. Exp Hematol. 2002;30:729–737.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    La Rosee P, Johnson K, Corbin AS, et al. In vitro efficacy of combined treatment depends on the underlying mechanism of resistance in imatinib-resistant Bcr-Abl-positive cell lines. Blood. 2004;103:208–215.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Kantarjian HM, O’Brien SM, Keating M, et al. Results of decitabine therapy in the accelerated and blastic phases of chronic myelogenous leukemia. Leukemia. 1997;11:1617–1620.PubMedCrossRefGoogle Scholar
  129. 129.
    Kantarjian HM, O’Brien S, Cortes J, et al. Results of decitabine (5-aza-2′deoxycytidine) therapy in 130 patients with chronic myelogenous leukemia. Cancer. 2003;98:522–528.PubMedCrossRefGoogle Scholar
  130. 130.
    Giles FJ, Feldman EJ, Roboz GJ, et al. Phase II study of troxacitabine, a novel dioxolane nucleoside analog, in patients with untreated or imatinib mesylate-resistant chronic myelogenous leukemia in blastic phase. Leuk Res. 2003;27:1091–1096.PubMedCrossRefGoogle Scholar
  131. 131.
    McWhirter JR, Wang JY. An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J. 1993;12:1533–1546.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Wen ST, Jackson PK, Van Etten RA. The cytostatic function of c-Abl is controlled by multiple nuclear localization signals and requires the p53 and Rb tumor suppressor gene products. EMBO J. 1996;15:1583–1595.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Taagepera S, McDonald D, Loeb JE, et al. Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase. Proc Natl Acad Sci USA. 1998;95:7457–7462.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Fornerod M, Ohno M, Yoshida M, Mattaj IW. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell. 1997;90:1051–1060.PubMedCrossRefGoogle Scholar
  135. 135.
    Fukuda M, Asano S, Nakamura T, et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature. 1997;390:308–311.PubMedCrossRefGoogle Scholar
  136. 136.
    McGahon A, Bissonnette R, Schmitt M, Cotter KM, Green DR, Cotter TG. BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death [published correction appears in Blood. 1994;83:3835]. Blood. 1994;83:1179–1187.PubMedGoogle Scholar
  137. 137.
    Vigneri P, Wang JY. Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nat Med. 2001;7:228–234.PubMedCrossRefGoogle Scholar
  138. 138.
    Newlands ES, Rustin GJ, Brampton MH. Phase I trial of elactocin. Br J Cancer. 1996;74:648–649.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Skorski T, Nieborowska-Skorska M, Nicolaides NC, et al. Suppression of Philadelphia1 leukemia cell growth in mice by BCR-ABL antisense oligodeoxynucleotide. Proc Natl Acad Sci USA. 1994;91:4504–4508.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    De Fabritiis P, Petti MC, Montefusco E, et al. BCR-ABL antisense oligodeoxynucleotide in vitro purging and autologous bone marrow transplantation for patients with chronic myelogenous leukemia in advanced phase. Blood. 1998;91:3156–3162.PubMedGoogle Scholar
  141. 141.
    James HA, Gibson I. The therapeutic potential of ribozymes. Blood. 1998;91:371–382.PubMedGoogle Scholar
  142. 142.
    Kuwabara T, Warashina M, Tanabe T, Tani K, Asano S, Taira K. A novel allosterically trans-activated ribozyme, the maxizyme, with exceptional specificity in vitro and in vivo. Mol Cell. 1998;2:617–627.PubMedCrossRefGoogle Scholar
  143. 143.
    Tanabe T, Kuwabara T, Warashina M, Tani K, Taira K, Asano S. Oncogene inactivation in a mouse model. Nature. 2000;406:473–474.PubMedCrossRefGoogle Scholar
  144. 144.
    Wu Y, Yu L, McMahon R, Rossi JJ, Forman SJ, Snyder DS. Inhibition of bcr-abl oncogene expression by novel deoxyribozymes (DNAzymes). Hum Gene Ther. 1999;10:2847–2857.PubMedCrossRefGoogle Scholar
  145. 145.
    Hannon GJ. RNA interference. Nature. 2002;418:244–251.PubMedCrossRefGoogle Scholar
  146. 146.
    Zamore PD. Ancient pathways programmed by small RNAs. Science. 2002;296:1265–1269.PubMedCrossRefGoogle Scholar
  147. 147.
    Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000;404:293–296.PubMedCrossRefGoogle Scholar
  148. 148.
    Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363–366.PubMedCrossRefGoogle Scholar
  149. 149.
    Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M. Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood. 2003;101:1566–1569.PubMedCrossRefGoogle Scholar
  150. 150.
    Wohlbold L, van der KH, Miething C, et al. Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571). Blood. 2003;102:2236–2239.PubMedCrossRefGoogle Scholar
  151. 151.
    Bocchia M, Wentworth PA, Southwood S, et al. Specific binding of leukemia oncogene fusion protein peptides to HLA class I molecules. Blood. 1995;85:2680–2684.PubMedGoogle Scholar
  152. 152.
    Bosch GJ, Joosten AM, Kessler JH, Melief CJ, Leeksma OC. Recognition of BCR-ABL positive leukemic blasts by human CD4+ T cells elicited by primary in vitro immunization with a BCR-ABL breakpoint peptide. Blood. 1996;88:3522–3527.PubMedGoogle Scholar
  153. 153.
    Pawelec G, Max H, Halder T, et al. BCR/ABL leukemia oncogene fusion peptides selectively bind to certain HLA-DR alleles and can be recognized by T cells found at low frequency in the repertoire of normal donors. Blood. 1996;88:2118–2124.PubMedGoogle Scholar
  154. 154.
    Mannering SI, McKenzie JL, Fearnley DB, Hart DN. HLA-DR1-restricted bcr-abl (b3a2)-specific CD4+ T lymphocytes respond to dendritic cells pulsed with b3a2 peptide and antigenpresenting cells exposed to b3a2 containing cell lysates. Blood. 1997;90:290–297.PubMedGoogle Scholar
  155. 155.
    Pinilla-Ibarz J, Cathcart K, Korontsvit T, et al. Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogene breakpoint fusion peptides generates specific immune responses. Blood. 2000;95:1781–1787.PubMedGoogle Scholar
  156. 156.
    Cathcart K, Pinilla-Ibarz J, Korontsvit T, et al. A multivalent bcr-abl fusion peptide vaccination trial in patients with chronic myeloid leukemia. Blood. 2004;103:1037–1042.PubMedCrossRefGoogle Scholar
  157. 157.
    Gao L, Bellantuono I, Elsasser A, et al. Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood. 2000;95:2198–2203.PubMedGoogle Scholar
  158. 158.
    Amrolia PJ, Reid SD, Gao L, et al. Allorestricted cytotoxic T cells specific for human CD45 show potent antileukemic activity. Blood. 2003;101:1007–1014.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    El Ouriaghli F, Fujiwara H, Melenhorst JJ, Sconocchia G, Hensel N, Barrett AJ. Neutrophil elastase enzymatically antagonizes the in vitro action of G-CSF: implications for the regulation of granulopoiesis. Blood. 2003;101:1752–1758.PubMedCrossRefGoogle Scholar
  160. 160.
    El Ouriaghli F, Sloand E, Main waring L, et al. Clonal dominance of chronic myelogenous leukemia is associated with diminished sensitivity to the antiproliferative effects of neutrophil elastase. Blood. 2003;102:3786–3792.CrossRefGoogle Scholar
  161. 161.
    Fujiwara H, El Ouriaghli F, Grube M, et al. Identification and in vitro expansion of CD4+ and CD8+ T cells specific for human neutrophil elastase. Blood. 2004;103:3076–3083.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Molldrem JJ, Clave E, Jiang YZ, et al. Cytotoxic T lymphocytes specific for a nonpolymorphic proteinase 3 peptide preferentially inhibit chronic myeloid leukemia colony-forming units. Blood. 1997;90:2529–2534.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Molldrem JJ, Lee PP, Wang C, et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med. 2000;6:1018–1023.CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2004

Authors and Affiliations

  1. 1.Department of HaematologyImperial College London, Hammersmith HospitalLondonUK

Personalised recommendations