International Journal of Hematology

, Volume 86, Issue 2, pp 166–173 | Cite as

Expression of Multidrug Resistance 1 (MDR1), Multidrug Resistance-Related Protein 1 (MRP1), Lung Resistance Protein (LRP), and Breast Cancer Resistance Protein (BCRP) Genes and Clinical Outcome in Childhood Acute Lymphoblastic Leukemia

  • M. Kourti
  • N. Vavatsi
  • N. Gombakis
  • V. Sidi
  • G. Tzimagiorgis
  • T. Papageorgiou
  • D. Koliouskas
  • F. Athanassiadou


The aim of this prospective study was to analyze the expression of messenger RNA of genes, such as MDR1, MRP1, BCRP, and LRP, implicated in the mechanism of multidrug resistance (MDR) in relation to the response to induction chemotherapy and relapse and these genes’ correlation with each other and with pretreatment laboratory and clinical characteristics. We prospectively studied 49 children (26 boys and 23 girls) with acute lymphoblastic leukemia (ALL) (median age, 5.5 years; range, 15 months to 12.5 years) who were treated with the BFM95 chemotherapy protocol. We used bone marrow mononuclear cells from 7 healthy children as controls. The expression of MDR genes and the β-actin housekeeping gene was detected by the reverse transcription-polymerase chain reaction with the appropriate primers. The mean expression of each MDR gene was significantly higher in the patients than in the control group (P <.01). We found statistically significant correlations between MRP1 and LRP expression and between MRP1 or LRP expression and MDR1 expression (P <.05). High expression for the MDR1 gene was found in 18 patients (36.7%), and their prognoses were significantly worse than those with low expression (event-free survival, 55.56% versus 86.67%;P =.03, log-rank test). Expression of each of the MDR genes was independent of the initial white blood cell count, immunophenotype, National Cancer Institute risk classification, and prednisone response. Interestingly, MDR1 expression was significantly higher at relapse than at diagnosis for 4 sample pairs. Evaluation of MDR1 expression at diagnosis of childhood ALL may contribute to the early identification of patients at risk of treatment failure.

Key words

cute lymphoblastic leukemia MDR1 MRP1 LRP BCRP Multidrug resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Moerloose B, Swerts K, Benoit Y, et al. The combined analysis of P-glycoprotein expression and activity predicts outcome in childhood acute lymphoblastic leukemia.Pediatr Hematol Oncol. 2003;20:381–391.CrossRefGoogle Scholar
  2. 2.
    Kartner N, Ling V. Multidrug resistance in cancer.Sci Am. 1989;260:44–51.CrossRefPubMedGoogle Scholar
  3. 3.
    Tsuruo T. Mechanisms of multidrug resistance and implications for therapy.Jpn J Cancer Res. 1988;79:285–296.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lautier D, Canitrot Y, Deeley RG, Cole SP. Multidrug resistance mediated by the multidrug resistance protein (MRP) in acute leukemia.Biochem Pharmacol. 1996;52:967–977.CrossRefPubMedGoogle Scholar
  5. 5.
    Ross DD, Karp JE, Chen TT, Doyle LA. Expression of breast cancer resistance protein in blast cells from patients with acute leukemia.Blood. 2000;96:365–368.PubMedGoogle Scholar
  6. 6.
    Sparreboom A, Danesi R, Ando Y, Chan J, Figg WD. Pharmacoge- nomics of ABC transporters and its role in cancer chemotherapy.Drug Resist Updat. 2003;6:71–84.CrossRefPubMedGoogle Scholar
  7. 7.
    Scheper RJ, Broxterman HJ, Scheffer GL, et al. Overexpression of a 110,000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance.Cancer Res. 1993;53:1475–1479.PubMedGoogle Scholar
  8. 8.
    Scheffer GL, Wijngaard PL, Flens MJ, et al. The drug resistance- related protein LRP is the human major vault protein.Nat Med. 1995;1:578–582.CrossRefPubMedGoogle Scholar
  9. 9.
    Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the acute leukaemias: French-American-British (FAB) co-operative group.Br J Haematol. 1976;33:451–458.CrossRefPubMedGoogle Scholar
  10. 10.
    Bene MC, Castoldi G, Knapp W, et al. Proposals for the immuno- logical classification of acute leukemias: European Group for the Immunological Characterization of Leukemias (EGIL).Leukemia. 1995;9:1783–1786.PubMedGoogle Scholar
  11. 11.
    Roy A, Cargill A, Love S, et al. Outcome after first relapse in childhood acute lymphoblastic leukaemia: lessons from the United Kingdom R2 trial.Br J Haematol. 2005;130:67–75.CrossRefPubMedGoogle Scholar
  12. 12.
    Ogretmen B, Barredo J, Ahmad S. Increased expression of lung resistance-related protein and multidrug resistance-associated protein messenger RNA in childhood acute lymphoblastic leukemia.J Pediatr Hematol Oncol. 2000;22:45–49.CrossRefPubMedGoogle Scholar
  13. 13.
    Kourti M, Vavatsi N, Gombakis N, et al. Increased expression of multidrug resistance gene (MDR1) at relapse in a child with acute lymphoblastic leukemia.Pediatr Hematol Oncol. 2006;23:489–494.CrossRefPubMedGoogle Scholar
  14. 14.
    Sauerbrey A, Voigt A, Wittig S, Hafer R, Zintl F. Messenger RNA analysis of the multidrug resistance related protein (MRP1) and the lung resistance protein in de novo and relapsed childhood acute lymphoblastic leukemia.Leuk Lymphoma. 2002;43:875–879.CrossRefPubMedGoogle Scholar
  15. 15.
    Arceci RJ. Can multidrug resistance mechanisms be modified?Br J Haematol. 2000;110:285–291.CrossRefPubMedGoogle Scholar
  16. 16.
    Tafuri A, Gregorj C, Petrucci MT, et al. MDR1 protein expression is an independent predictor of complete remission in newly diagnosed adult acute lymphoblastic leukemia.Blood. 2002;100:974–981.CrossRefPubMedGoogle Scholar
  17. 17.
    Damiani D, Michelutti A, Michieli M, et al. P-glycoprotein, lung resistance-related protein and multidrug resistance-associated protein in de novo adult acute lymphoblastic leukaemia.Br J Haematol. 2002;116:519–527.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zochbauer S, Gsur A, Brunner R, Kyrle PA, Lechner K, Pirker R. P-glycoprotein expression as unfavorable prognostic factor in acute myeloid leukemia.Leukemia. 1994;8:974–977.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Dhooge C, De Moerloose B, Laureys G, et al. Expression of multidrug transporter P-glycoprotein is highly correlated with clinical outcome in childhood acute lymphoblastic leukemia: results of a long-term prospective study.Leuk Lymphoma. 2002;43:309–14.CrossRefGoogle Scholar
  20. 20.
    Kanerva J, Tiirikainen MI, Mäkipernaa A, et al. Initial P-glycoprotein expression in childhood acute lymphoblastic leukemia: no evidence of prognostic impact in follow-up.Pediatr Hematol Oncol. 2001;18:27–36.CrossRefPubMedGoogle Scholar
  21. 21.
    Ford JM, Hait WN. Pharmacology of drugs that alter multidrug resistance in cancer.Pharmacol Rev. 1990;42:155–199.PubMedGoogle Scholar
  22. 22.
    Goasguen JE, Dossot JM, Fardel O, et al. Expression of the multidrug resistance-associated P-glycoprotein (P-170) in 59 cases of de novo acute lymphoblastic leukemia: prognostic implications.Blood. 1993;81:2394–2398.PubMedGoogle Scholar
  23. 23.
    Brophy NA, Marie JP, Rojas VA, et al. Mdr1 gene expression in childhood acute lymphoblastic leukemias and lymphomas: a critical evaluation by four techniques.Leukemia. 1994;8:327–335.PubMedGoogle Scholar
  24. 24.
    Tafuri A, Sommaggio A, Burba L, et al. Prognostic value of rho- damine-efflux and MDR-1/P-170 expression in childhood acute leukemia.Leuk Res. 1995;19:927–931.CrossRefPubMedGoogle Scholar
  25. 25.
    Wuchter C, Leonid K, Ruppert V, et al. Clinical significance of P- glycoprotein expression and function for response to induction chemotherapy, relapse rate and overall survival in acute leukemia.Haematologica. 2000;85:711–721.PubMedGoogle Scholar
  26. 26.
    den Boer ML, Pieters R, Kazemier KM, et al. Relationship between major vault protein/LRP, multidrug resistance-associated protein, P-glycoprotein expression, and drug resistance in childhood leukemia.Blood. 1998;91:2092–2098.Google Scholar
  27. 27.
    Del Poeta G, Stasi R, Aronica G, et al. Clinical relevance of P-glycoprotein expression in de novo acute myeloid leukemia.Blood. 1996;87:1997–2004.PubMedGoogle Scholar
  28. 28.
    Beck WT, Grogan TM, Willman CL, et al. Methods to detect P-glycoprotein-associated multidrug resistance in patients’ tumors: consensus recommendations.Cancer Res. 1996;56:3010–3020.PubMedGoogle Scholar
  29. 29.
    Xie XY, Robb D, Chow S, Hedley DW. Discordant P-glycoprotein antigen expression and transport function in acute myeloid leukemia.Leukemia. 1995;9:1882–1887.PubMedGoogle Scholar
  30. 30.
    Ivy SP, Olshefski RS, Taylor BJ, Patel KM, Reaman GH. Correlation of P-glycoprotein expression and function in childhood acute leukemia: a children’s cancer group study.Blood. 1996;88:309–318.PubMedGoogle Scholar
  31. 31.
    Cole SP, Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrug resistance human lung cancer cell line.Science. 1992;258:1650–1656.CrossRefPubMedGoogle Scholar
  32. 32.
    Hart SM, Ganeshaguru K, Hoffbrand AV, Prentice HG, Mehta AB. Expression of the multidrug resistance-associated protein (MRP) in acute leukaemia.Leukemia. 1994;8:2163–2168.PubMedGoogle Scholar
  33. 33.
    Kakihara T, Tanaka A, Watanabe A, et al. Expression of multidrug resistance-related genes does not contribute to risk factors in newly diagnosed childhood acute lymphoblastic leukemia.Pediatr Int. 1999;41:641–647.CrossRefPubMedGoogle Scholar
  34. 34.
    Plasschaert SL, Vellenga E, de Bont ES, et al. High functional P-glycoprotein activity is more often present in T-cell acute lymphoblastic leukemic cells in adults than in children.Leuk Lymphoma. 2003;44:85–95.CrossRefPubMedGoogle Scholar
  35. 35.
    Kickhoefer VA, Rajavel KS, Scheffer GL, Dalton WS, Scheper RJ, Rome LH. Multidrug resistant cancer cell lines contain elevated levels of vaults.Proc Am Assoc Cancer Res.1997;38:252.Google Scholar
  36. 36.
    List AF, Spier CS, Grogan TM, et al. Overexpression of the major vault transporter protein lung-resistance protein predicts treatment outcome in acute myeloid leukemia.Blood. 1996;87:2464–2469.PubMedGoogle Scholar
  37. 37.
    Filipits M, Pohl G, Stranzl T, et al. Expression of the lung resistance protein predicts poor outcome in de novo acute myeloid leukemia.Blood. 1998;91:1508–1513.PubMedGoogle Scholar
  38. 38.
    Slovak ML, Ho JP, Bhardwaj G, Kurz EU, Deeley RG, Cole SP. Localization of a novel multidrug resistance-associated gene in the HT1080/DR4 and H69AR human tumor cell lines.Cancer Res. 1993;53:3221–3225.PubMedGoogle Scholar
  39. 39.
    Flens MJ, Izquierdo MA, Scheffer GL, et al. Immuno- chemical detection of the multidrug resistance-associated protein MRP in human multidrug-resistant tumor cells by monoclonal antibodies.Cancer Res. 1994;54:4557–4563.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Slovak ML, Ho JP, Cole SP, et al. TheLRP gene encoding a major vault protein associated with drug resistance maps proximal toMRP on chromosome 16: evidence that chromosome breakage plays a key role inMRP orLRP gene amplification.Cancer Res. 1995;55:4214–4219.PubMedGoogle Scholar
  41. 41.
    Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells.Proc Natl Acad Sci U S A. 1998;95:15665–15670.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Maliepaard M, Scheffer GL, Faneyte IF, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues.Cancer Res. 2001;61:3458–3464.PubMedGoogle Scholar
  43. 43.
    Stam RW, van den Heuvel-Eibrink MM, den Boer ML, et al. Multidrug resistance genes in infant acute lymphoblastic leukemia: Ara-C is not a substrate for the breast cancer resistance protein.Leukemia. 2004;18:78–83.CrossRefPubMedGoogle Scholar
  44. 44.
    Sauerbrey A, Sell W, Steinbach D, Voigt A, Zintl F. Expression of the BCRP gene (ABCG2/MXR/ABCP) in childhood acute lymphoblastic leukemia.Br J Haematol. 2002;118:147–150.CrossRefPubMedGoogle Scholar
  45. 45.
    Plasschaert SL, van der Kolk DM, de Bont ES, et al. The role of breast cancer resistance protein in acute lymphoblastic leukemia.Clin Cancer Res. 2003;9: 5171–5177.PubMedGoogle Scholar
  46. 46.
    Steinbach D, Sell W, Voigt A, Hermann J, Zintl F, Sauerbrey A. BCRP gene expression is associated with a poor response to remission induction therapy in childhood acute myeloid leukemia.Leukemia. 2002;16:1443–1447.CrossRefPubMedGoogle Scholar
  47. 47.
    Den Boer ML, Harms DO, Pieters R, et al. Patient stratification based on prednisolone-vincristine-asparaginase resistance profiles in children with acute lymphoblastic leukemia.J Clin Oncol. 2003;21:3262–3268.CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2007

Authors and Affiliations

  • M. Kourti
    • 1
    • 2
  • N. Vavatsi
    • 2
  • N. Gombakis
    • 3
  • V. Sidi
    • 4
  • G. Tzimagiorgis
    • 2
  • T. Papageorgiou
    • 1
  • D. Koliouskas
    • 4
  • F. Athanassiadou
    • 1
  1. 1.Second Department of Pediatrics, Division of Hematology- OncologyAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Biochemistry Department, Medical SchoolAristotle University of ThessalonikiThessalonikiGreece
  3. 3.First Department of PediatricsAristotle University of ThessalonikiThessalonikiGreece
  4. 4.Pediatric Hematology and Oncology DepartmentHippokration HospitalThessalonikiGreece

Personalised recommendations