International Journal of Hematology

, Volume 82, Issue 4, pp 327–332 | Cite as

Fas, Fas-Associated Death Domain-Like Interleukin 1β-Converting Enzyme-Like Inhibitory Protein, and Apoptotic Features of Elderly Acute Myeloid Leukemia Based on Response to Induction Chemotherapy

  • Hee-Je Kim
  • Byung-Hee Park
  • Young Choi
  • Woo-Sung Min
  • Jong-Wook Lee
  • Chun-Choo Kim
Article

Abstract

A study was performed to examine the clinical outcome of triple-combination induction chemotherapy in 26 elderly Korean acute myeloid leukemia (AML) patients and to investigate apoptotic responses during and after treatment to determine whether the responses can be used as prognostic markers. Patients who had Western blot or polymerase chain reaction analysis findings of higher expression levels of Fas-associated death domain-like interleukin 1β-converting enzyme-like inhibitory protein (FLIP) on day 7 after chemotherapy were more likely to have complete remission, but there was less or no correlation with Fas or a proapoptosis/apoptosis reaction. Expression of FLIP molecules may be, at least in part, an early prognostic indicator in the treatment of elderly AML patients.

Key words

Induction chemotherapy Elderly AML patients Apoptotic responses FLIP molecule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leith CP, Kopecky KJ, Godwin J, et al. Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkable distinct response to standard chemotherapy-a Southwest Oncology Group study.Blood. 1997;89:3323–3329.PubMedGoogle Scholar
  2. 2.
    Leith CP, Chen I, Kopecky KJ. Correlation of multidrug resistance (MDR1) protein expression with functional Dye/Drug efflux in acute myeloid leukemia by multiparameter flow cytometry: identification of discordant/MDR-/Efflux+ and MDR1+/Effluxcases.Blood. 1995;86:2329–2342.PubMedGoogle Scholar
  3. 3.
    Dastugue N, Payen C, Lafage-Pochitaloff M, et al. Prognostic significance of karyotype in de novo adult acute myeloid leukemia.Leukemia. 1995;9:1491–1498.PubMedGoogle Scholar
  4. 4.
    Schoch C, Haferlach T, Haase D, et al. Patients with de novo acute myeloid leukaemia and complex karyotype aberrations show a poor prognostic despite intensive treatment: a study of 90 patients.BrJ Haematol. 2001;112:118–126.CrossRefGoogle Scholar
  5. 5.
    Hamblin TJ. The treatment of acute myeloid leukemia preceded by the myelodysplastic syndrome.Leukemia Res. 1992;16:4101–4108.Google Scholar
  6. 6.
    Hoyle CF, de Bastos M, Wheatley K, et al. AML associated with previously cytotoxic therapy, MDS or myelo-proliferative disorders: results from the MRC’s 9th AML trial.Br J Haematol. 1989;72:45–53.PubMedCrossRefGoogle Scholar
  7. 7.
    Nussler V, Saver H, Pelka-Fleischerf R, Holzel D, Wilmanns W. Clinical biochemical and cytotoxic parameters for distinguishing smouldering and rapidly proliferating variants of acute leukaemia.EurJ Hematol. 1990;45:19–25.CrossRefGoogle Scholar
  8. 8.
    Howe RB, Bloomfield CD, McKenna RW. Hypocellular acute leukaemia.Am J Med. 1982;72:391–395.PubMedCrossRefGoogle Scholar
  9. 9.
    Buchner T, Urbanitz D, Hiddenmann W, et al. Intensified induction and consolidation with or without maintenance chemotherapy for acute myeloid leukemia (AML): two multicenter studies of the German AML Cooperative Group.J Clin Oncol. 1985;3:1583–1589.PubMedGoogle Scholar
  10. 10.
    Mayer RJ, Davis RB, Schiffer CA, et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. Cancer and Leukemia Group B.N Engl J Med. 1994;331:896–903.PubMedCrossRefGoogle Scholar
  11. 11.
    Buchner T, Hiddemann W, Schaefer UW, et al. Combined effect of very early intensification and prolonged post-remission chemotherapy in patients with AML.Leukemia. 1992;6(suppl 4):68–70.Google Scholar
  12. 12.
    Stone RM, Berg DT, George SL, et al. Postremission therapy in older patients with de novo acute myeloid leukemia: a randomized trial comparing mitoxantrone and intermediate-dose cytarabine with standard-dose cytarabine.Blood. 2001;98:548–553.PubMedCrossRefGoogle Scholar
  13. 13.
    Stone RM, Berg TB, George SL, et al. Granulocyte-macrophage colony-stimulating factor after initial chemotherapy for elderly patients with primary acute myelogenous leukemia.N Engl J Med. 1995;332:1671–1677.PubMedCrossRefGoogle Scholar
  14. 14.
    Dombret H, Chastang C, Fenaux P, et al. A controlled study of recombinant human granulocyte colony-stimulating factor in elderly patients after treatment for acute myelogenous leukemia.N Engl J Med. 1995;332:1678–1683.PubMedCrossRefGoogle Scholar
  15. 15.
    Yates J, Glidewell O, Wiernik P, et al. Cytosine arabinoside with daunorubicin or adriamycin for therapy of acute myelocytic leukemia: a CALGB study.Blood. 1982;60:454–462.PubMedGoogle Scholar
  16. 16.
    Detourmignies L, Wattel E, Lai JL, Bauters F, Fenaux P. Is there still a role for low-dose cytosine arabinoside in de novo acute myeloid leukemia in the elderly?Ann Hematol. 1993;66:235–240.PubMedCrossRefGoogle Scholar
  17. 17.
    Sievers EL, Larson RA, Stadtmauer EA, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first remission.J Clin Oncol. 2001;19:3244–3254.PubMedGoogle Scholar
  18. 18.
    Mesters RM, Padro T, Bieker R, et al. Stable remission after administration of the receptor tyrosine kinase inhibitor SU5416 in a patient with refractory acute myeloid leukemia.Blood. 2001;98:241–243.PubMedCrossRefGoogle Scholar
  19. 19.
    Schittenhelm M, Aichele O, Krober SM, Brummendorf T, Kanz L, Denzlinger C. Complete remission of third recurrence of acute myeloid leukemia after treatment with imatinib (STI-571).Leuk Lymphoma. 2003;44:1251–1253.PubMedCrossRefGoogle Scholar
  20. 20.
    Dorr R, Karanes C, Spier C, et al. Phase I/II study of the p-glycoprotein modulator PSC 833 in patients with acute myeloid leukemia.J Clin Oncol. 2001;19:1589–1599.PubMedGoogle Scholar
  21. 21.
    McSweeney PA, Niederwiesesr D, Shizuru JA, et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects.Blood. 2001;97:3390–3400.PubMedCrossRefGoogle Scholar
  22. 22.
    Bertz H, Potthoff K, Finke J. Allogeneic stem-cell transplantation from related and unrelated donors in older patients with myeloid leukemia.J Clin Oncol. 2003;21:1480–1484.PubMedCrossRefGoogle Scholar
  23. 23.
    Lowenberg B, Suciu S, Archimbaud E, et al. Mitoxantrone vs daunorubicin in induction-consolidation chemotherapy-the value of low-dose cytarabine for maintenance of remission, and an assessment of prognostic factors in acute myeloid leukaemia in the elderly: final report. European Organization of the Research and Treatment of Cancer and the Dutch-Belgian Hemato-Oncology Cooperative Hovon Group.J Clin Oncol. 1998;16:872–881.PubMedGoogle Scholar
  24. 24.
    Kim HJ, Whartenby KA, Georgantas RW, Wingard J, Civin CI. Human CD34+ cells are resistant to FasL due to high expression of FLIP.Stem Cells. 2002;20:174–182.PubMedCrossRefGoogle Scholar
  25. 25.
    Lowenberg B, Zittoun R, Kerkhofs H, et al. On the value of intensive remission induction chemotherapy in elderly patients of 65+ years with acute myeloid leukaemia: a randomized phase III study of the European Organisation for Research and Treatment of Cancer Leukaemia Group.J Clin Oncol. 1989;7:1268–1274.PubMedGoogle Scholar
  26. 26.
    Foon KA, Zighelboim J, Yale C, Gale RP. Intensive chemotherapy is the treatment of choice for elderly patients with acute myelogenous leukaemia.Blood. 1981;3:467–470.Google Scholar
  27. 27.
    Godwin JE, Smith SE. Acute myeloid leukemia in the older patient.Crit Rev Oncol Hematol. 2003;48S:S17-S26.CrossRefGoogle Scholar
  28. 28.
    Lewis NR, Pallis M, Russell NH. Fas receptor-Fas ligand system is independent of both CD34 status and chemosensitivity in acute myeloid leukemia.Exp Hematol. 2000;28:535–542.PubMedCrossRefGoogle Scholar
  29. 29.
    Gupta P, Niehans GA, LeRoy SC, et al. Fas ligand expression in the bone marrow in myelodysplastic syndromes correlates with FAB subtype and anemia, and predicts survival.Leukemia. 1999;13:44–53.PubMedCrossRefGoogle Scholar
  30. 30.
    Komada Y, Sakurai M. Fas receptor (CD95)-mediated apoptosis in leukemic cells.Leuk Lymphoma. 1997;25:9–21.PubMedGoogle Scholar
  31. 31.
    Braess J, Schneiderat P, Schoch C, Fiegl M, Lorenz I, Hiddemann W. Functional analysis of apoptosis induction in acute myeloid leukaemia-relevance of karyotype and clinical treatment response.BrJ Haematol. 2004;126:338–347.CrossRefGoogle Scholar
  32. 32.
    Stahnke K, Eckhoff S, Mohr A, Meyer LH, Debatin KM. Apoptosis induction in peripheral leukemia cells by remission induction treatment in vivo: selective depletion and apoptosis in a CD34+ subpopulation of leukemia cells.Leukemia. 2003;17:2130–2139.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2005

Authors and Affiliations

  • Hee-Je Kim
    • 1
  • Byung-Hee Park
    • 1
  • Young Choi
    • 1
  • Woo-Sung Min
    • 1
  • Jong-Wook Lee
    • 1
  • Chun-Choo Kim
    • 1
  1. 1.Division of Hematology, Department of Internal Medicine, Catholic Hemopoietic Stem Cell Transplantation CenterCatholic University of Korea College of MedicineSeoulKorea

Personalised recommendations