International Journal of Hematology

, Volume 81, Issue 4, pp 294–300 | Cite as

Epigenetic Regulation of Hematopoietic Stem Cell Self-Renewal by Polycomb Group Genes

  • Atsushi IwamaEmail author
  • Hideyuki Oguro
  • Masamitsu Negishi
  • Yuko Kato
  • Hiromitsu NakauchiEmail author
Progress in Hematology


Polycomb group (PcG) genes are involved in the maintenance of cellular memory through epigenetic chromatin modifications. Recent studies have implicated a role for PcG genes in the self-renewal of hematopoietic stem cells (HSCs), a process in which cellular memory is maintained through cell division. Among the PcG genes, Bmi-1 plays a central role in the inheritance of stemness, and its forced expression promotes HSC self-renewal. These findings highlight the importance of epigenetic regulation in HSC self-renewal and identify PcG genes as potential targets for therapeutic HSC manipulation.

Key words

Polycomb group genes Hematopoietic stem cells Bmi-1 Cellular memory Epigenetic regulation Self-renewal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nakao M, Minami T, Ueda Y, et al. Epigenetic system: a pathway to malignancies and a therapeutic target. Int J Hematol. 2004;80:103–107.CrossRefPubMedGoogle Scholar
  2. 2.
    Francis NJ, Kingston RE. Mechanisms of transcriptional memory. Nat Rev Mol Cell Biol. 2001;2:409–421.CrossRefPubMedGoogle Scholar
  3. 3.
    Orland V. Polycomb, epigenomes, and control of cell identity. Cell. 2003;112:599–606.CrossRefGoogle Scholar
  4. 4.
    Lund AH, van Lohuizen M. Polycomb complexes and silencing mechanisms. Curr Opin Cell Biol. 2004;16:239–246.CrossRefPubMedGoogle Scholar
  5. 5.
    Lund AH, van Lohuizen M. Epigenetics and cancer. Genes Dev. 2004;18:2315–2335.CrossRefPubMedGoogle Scholar
  6. 6.
    Valk-Lingbeek ME, Bruggeman SWM, van Lohuizen M. Stem cells and cancer: the polycomb connection. Cell. 2004;118:409–418.CrossRefPubMedGoogle Scholar
  7. 7.
    Park I-K, Morrison SJ, Clarke MF. Bmi-1, stem cells, and senescence regulation. J Clin Invest. 2004;113:175–179.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ohta H, Sawada A, Kim JY, et al. Polycomb group gene rae28 is required for sustaining activity of hematopoietic stem cells. J Exp Med. 2002;195:759–770.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kim J, Sawada A, Tokimasa S, et al. Defective long-term repopulating ability in hematopoietic stem cells lacking the Polycomb- group gene rae28. Exp Hematol. 2004;73:75–84.Google Scholar
  10. 10.
    Park I-K, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423:302–305.CrossRefPubMedGoogle Scholar
  11. 11.
    Lessard J, Sauvageau G. Bmi-1 determines proliferative capacity of normal and leukaemic stem cells. Nature. 2003;423:255–260.CrossRefPubMedGoogle Scholar
  12. 12.
    Iwama A, Oguro H, Negishi M, et al. Enhanced self-renewal of hematopoietic stem cells mediated by the Polycomb gene product, Bmi-1. Immunity. 2004;21:843–851.CrossRefPubMedGoogle Scholar
  13. 13.
    Wang H, Wang L, Erdjument-Bromage H, et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature. 2004;431:873–878.CrossRefPubMedGoogle Scholar
  14. 14.
    Cao R, Wang L, Wang H, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298:1039–1043.CrossRefPubMedGoogle Scholar
  15. 15.
    Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 2002;16:2893–2905.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mahmoudi T, Verrijzer CP. Chromatin silencing and activation by Polycomb and trithorax group proteins. Oncogene. 2001;20:3055–3066.CrossRefPubMedGoogle Scholar
  17. 17.
    Lessard L, Sauvageau G. Polycomb group genes as epigenetic regulators of normal and leukemic hemopoiesis. Exp Hematol. 2003;31:567–585.CrossRefPubMedGoogle Scholar
  18. 18.
    Osawa M, Hanada K-I, Hamada H, Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science. 1996;273:242–245.CrossRefGoogle Scholar
  19. 19.
    van der Lugt NM, Domen J, Linders K, et al. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev. 1994;8:757–769.CrossRefPubMedGoogle Scholar
  20. 20.
    Kajiume T, Nimomiya Y, Ishihara H, Kanno R, Kanno M. Polycomb group gene mel-18 modulates the self-renewal activity and cell cycle status of hematopoietic stem cells. Exp Hematol. 2004;32:571–578.CrossRefPubMedGoogle Scholar
  21. 21.
    Ema H, Nakauchi H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood. 2000;95:2284–2288.PubMedGoogle Scholar
  22. 22.
    Akasaka T, Tsuji K, Kawahira H, et al. The role of mel-18, a mammalian Polycomb group gene, during IL-7-dependent proliferation of lymphocyte precursors. Immunity. 1997;7:135–146.CrossRefPubMedGoogle Scholar
  23. 23.
    Tetsu O, Ishihara H, Kanno R, et al. mel-18 negatively regulates cell cycle progression upon B cell antigen receptor stimulation through a cascade leading to c-myc/cdc25. Immunity. 1998;9:439–448.CrossRefPubMedGoogle Scholar
  24. 24.
    Bel S, Core N, Djabali M, et al. Genetic interactions and dosage effects of Polycomb group genes in mice. Development. 1998;125:3543–3551.PubMedGoogle Scholar
  25. 25.
    Lessard J, Schumacher A, Thorsteinsdottir U, van Lohuizen M, Magnuson T, Sauvageau G. Functional antagonism of the Polycomb- Group genes eed and Bmi1 in hemopoietic cell proliferation. Genes Dev. 1999;13:2691–2703.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Takano H, Ema H, Sudo K, Nakauchi H. Asymmetric division and lineage commitment at the level of hematopoietic stem cells: inference from differentiation in daughter cell and granddaughter cell pairs. J Exp Med. 2004;199:295–302.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Jacobs JJL, Kieboom K, Marino S, DePinho RA, van Lohuizen M. The oncogene and Polycomb-group gene bmi-1 regulates proliferation and senescence through the ink4a locus. Nature. 1999;397:164–168.CrossRefPubMedGoogle Scholar
  28. 28.
    Akasaka T, van Lohuizen M, van der Lugt N, et al. Mice doubly deficient for the Polycomb Group genes Mel18 and Bmi1 reveal synergy and requirement for maintenance but not initiation of Hox gene expression. Development. 2001;128:1587–1597.PubMedGoogle Scholar
  29. 29.
    Antonchuk J, Sauvageau G, Humphries RK. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell. 2002;109:39–45.CrossRefPubMedGoogle Scholar
  30. 30.
    Barna M, Merghoub T, Costoya JA, et al. Plzf mediates transcriptional repression of HoxD gene expression through chromatin remodeling. Dev Cell. 2002;3:499–510.CrossRefPubMedGoogle Scholar
  31. 31.
    Trimarchi JM, Fairchild B, Wen J, Lees JA. The E2F6 transcription factor is a component of the mammalian Bmi1-containing polycomb complex. Proc Natl Acad Sci USA. 2001;98:1519–1524.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ogawa H, Ishiguro K, Gaubatz S, Livingston DM, Nakatani YA. Complex with chromatin modifiers that occupies E2F- and Myc- responsive genes in G0 cells. Science. 2002;296:1132–1136.CrossRefPubMedGoogle Scholar
  33. 33.
    Cheng T, Rodrigues N, Shen H, et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science. 2000;287:1804–1808.CrossRefPubMedGoogle Scholar
  34. 34.
    Yuan YY, Shen H, Franklin DS, Scadden DT, Cheng T. In vivo self- renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor p18INK4C. Nat Cell Biol. 2004;6:436–442.CrossRefPubMedGoogle Scholar
  35. 35.
    Sharpless NE, DePinho RA. The INK4A/ARF locus and its two gene products. Curr Opin Genet Dev. 1999;9:22–30.CrossRefGoogle Scholar
  36. 36.
    Lowe SW, Sherr CJ. Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev. 2003;13:77–83.CrossRefGoogle Scholar
  37. 37.
    Ito K, Hirao A, Arai F, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature. 2004;431:997–1002.CrossRefGoogle Scholar
  38. 38.
    Itahara K, Zou Y, Itahara Y, et al. Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol Cell Biol. 2003;23:389–401.CrossRefGoogle Scholar
  39. 39.
    Allsopp RC, Morin GB, DePinho R, Harley CB, Weissman IL. Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood. 2003;102:517–520.CrossRefGoogle Scholar
  40. 40.
    Allsopp RC, Morin GB, Horner JW, DePinho R, Harley CB, Weissman IL. Effect of TERT over-expression on the long-term transplantation capacity of hematopoietic stem cells. Nat Med. 2003;9:369–371.CrossRefPubMedGoogle Scholar
  41. 41.
    Dimri GP, Martinez J-L, Jacobs JJL, et al. The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res. 2002;62:4736–4745.PubMedGoogle Scholar
  42. 42.
    Kyba M, Perlingeiro RCR, Daley GQ. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell. 2002;109:29–37.CrossRefPubMedGoogle Scholar
  43. 43.
    Amsellem S, Pflumio F, Bardinet D, et al. Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HoxB4 homeoprotein. Nat Med. 2003;9:1423–1427.CrossRefPubMedGoogle Scholar
  44. 44.
    Krosl J, Austin P, Beslu N, Kroon E, Humphries RK, Sauvageau G. In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat Med. 2003;9:1428–1432.CrossRefPubMedGoogle Scholar
  45. 45.
    Takihara Y,Tomotsune D, Shirai M, et al. Targeted disruption of the mouse homologue of the Drosophila polyhomeotic gene leads to altered anteroposterior patterning and neural crest defects. Development. 1997;124:3673–3682.PubMedGoogle Scholar
  46. 46.
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–737.CrossRefPubMedGoogle Scholar
  47. 47.
    Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 2004;5:738–743.CrossRefPubMedGoogle Scholar
  48. 48.
    Passegue E, Jamieson CH, Ailles LE, Weissman IL. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA. 2003;100(suppl 1):11842–11849.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Smith KS, Chanda SK, Lingbeek M, et al. Bmi-1 regulation of INK4A-ARF is a downstream requirement for transformation of hematopoietic progenitors by E2a-Pbx1. Mol Cell. 2003;12:393–400.CrossRefPubMedGoogle Scholar
  50. 50.
    Miyamoto T, Iwasaki H, Reizis B, et al. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev Cell. 2002;3:137–147.CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang P, Iwasaki-Arai J, Iwasaki H, et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBPa. Immunity. 2004;21:853–863.CrossRefPubMedGoogle Scholar
  52. 52.
    Molofsky AV, Pardal R, Iwashita T, Park I-K, Clarke MF, Morrison SJ. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature. 2003;425:962–967.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumor initiating cells. Nature. 2004;432:396–401.CrossRefPubMedGoogle Scholar
  54. 54.
    Leung C, Lingbeek M, Shakhova O, et al. Bmi-1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature. 2004;428:337–341.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2005

Authors and Affiliations

  1. 1.Laboratory of Stem Cell Therapy, Center for Experimental Medicine, The Institute of Medical ScienceUniversity of TokyoTokyoJapan
  2. 2.Department of Cellular and Molecular Biology, Graduate School of MedicineChiba UniversityChibaJapan

Personalised recommendations