Natural Killer Cell Alloreactivity in Haploidentical Hematopoietic Stem Cell Transplantation

  • Loredana Ruggeri
  • Marusca Capanni
  • Antonella Mancusi
  • Katia Perruccio
  • Emanuela Burchielli
  • Massimo F. Martelli
  • Andrea Velardi
Progress in hematology


Natural killer (NK) cells are primed to kill by several activating receptors. NK cell killing of autologous cells is prevented because NK cells coexpress inhibitory receptors (killer cell immunoglobulin-like receptors [KIR]) that recognize groups of (self) major histocompatibility complex class I alleles. Because KIRs are clonally distributed, the NK cell population in any individual are constituted of a repertoire with a variety of class I specificities. NK cells in the repertoire mediate alloreactions when the allogeneic targets do not express the class I alleles that block them. After haploidentical hematopoietic transplantation, NK cell-mediated donor-versus-recipient alloresponses reduce the risk of relapse in acute myeloid leukemia patients while improving engraftment and protecting against graft-versus-host disease. High-resolution molecular HLA typing of recipient and donor, positive identification of donor KIR genes, and, in some cases, functional assessment of donor NK clones identify haploidentical donors who are able to mount donor-versus-recipient NK alloreactions.

Key words

Haploidentical transplants Natural killer cells KIR 


  1. 1.
    Anasetti C, Velardi A. Haematopoietic cell transplantation from HLA partially matched related donors. In: Blume KG, Forman SJ, Appelbaum FR, eds. Thomas’ Hematopoietic Cell Transplantation. Malden, UK: Blackwell Science; 2004:1116–1131.Google Scholar
  2. 2.
    Reisner Y, Martelli MF. Bone marrow transplantation across HLA barriers by increasing the number of transplanted cells. Immunol Today. 1995;16:437–440.PubMedCrossRefGoogle Scholar
  3. 3.
    Bachar-Lustig E, Rachamim N, Li HW, Lan F, Reisner Y. Megadose of T-depleted bone marrow overcomes MHC barriers in sublethally irradiated mice. Nat Med. 1995;1:1268–1273.PubMedCrossRefGoogle Scholar
  4. 4.
    Aversa F, Tabilio A, Terenzi A, et al. Successful engraftment of T-depleted haploidentical "three-loci" incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum. Blood. 1994;84:3948–3955.PubMedGoogle Scholar
  5. 5.
    Aversa F, Tabilio A, Velardi A, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998;339:1186–1193.PubMedCrossRefGoogle Scholar
  6. 6.
    Kärre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986;319:675–678.PubMedCrossRefGoogle Scholar
  7. 7.
    Ciccone E, Viale O, Pende D, et al. Specific lysis of allogeneic cells after activation of CD3-lymphocytes in mixed lymphocyte culture. J Exp Med. 1988;168:2403–2408.PubMedCrossRefGoogle Scholar
  8. 8.
    Ciccone E, Colonna M, Viale O, et al. Susceptibility or resistance to lysis by alloreactive NK cells is governed by a gene in the human major histocompatibility complex between Bf and HLA-B. Proc Natl Acad Sci U S A. 1990;87:9794–9797.PubMedCrossRefGoogle Scholar
  9. 9.
    Colonna M, Spies T, Strominger JL, et al. Alloantigen recognition by two human natural killer cells is associated with HLA-C or a closely linked gene. Proc Natl Acad Sci U S A. 1992;89:7983–7985.PubMedCrossRefGoogle Scholar
  10. 10.
    Ciccone E, Pende D, Viale O, et al. Evidence of a natural killer (NK) cell repertoire for (allo) antigen recognition: definition of five distinct NK-determined allospecificities in humans. J Exp Med. 1992;175:709–718.PubMedCrossRefGoogle Scholar
  11. 11.
    Ciccone E, Pende D, Viale O, et al. Involvement of HLA class I alleles in natural killer (NK) cell-specific functions: expression of HLA-Cw3 confers selective protection from lysis by alloreactive NK clones displaying a defined specificity (specificity 2). J Exp Med. 1992;176:963–971.PubMedCrossRefGoogle Scholar
  12. 12.
    Colonna M, Brooks EG, Falco M, Ferrara GB, Strominger JL. Generation of allospecific natural killer cells by stimulation across a polymorphism of HLA-C. Science. 1993;260:1121–1124.PubMedCrossRefGoogle Scholar
  13. 13.
    Colonna M, Borsellino G, Falco M, Ferrara GB, Strominger JL. HLA-C is the inhibitory ligand that determines dominant resistance to lysis by NK1- and NK2-specific natural killer cells. Proc Natl Acad Sci U S A. 1993;90:1200–1204.CrossRefGoogle Scholar
  14. 14.
    Ciccone E, Pende D, Vitale M, et al. Self class I molecules protect normal cells from lysis mediated by autologous natural killer cells. Eur J Immunol. 1994;24:1003–1006.PubMedCrossRefGoogle Scholar
  15. 15.
    Velardi A, Moretta A. Role of natural killer cell alloreactivity in hematopoietic stem cell transplantation. In: Atkinson K, Fibbe W, Champlin R, Ljungman L, Ritz R, Brenner M, eds. Clinical Bone Marrow and Blood Stem Cell Transplantation. Cambridge, UK: Cambridge University Press; 2004:247–261.Google Scholar
  16. 16.
    Uhrberg M, Valiante NM, Shum BP, et al. Human diversity in killer cell inhibitory receptor genes. Immunity. 1997;7:753–760.PubMedCrossRefGoogle Scholar
  17. 17.
    Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:2097–2100.PubMedCrossRefGoogle Scholar
  18. 18.
    Velardi A, Ruggeri L, Capanni M, et al. Impact of NK cell alloreactivity on mismatched hematopoietic transplantation: an update on donor selection criteria and on transplantation outcomes [abstract]. Blood. 2003;102:153a.Google Scholar
  19. 19.
    Pando MJ, Gardiner CM, Gleimer M, McQueen KL, Parham P. The protein made from a common allele of KIR3DL1 (3DL*004) is poorly expressed at cell surfaces due to substitution at position 86 in Ig domain 0 and 182 in Ig domain 1. J Immunol. 2003;171:6640–6647.PubMedGoogle Scholar
  20. 20.
    Ruggeri L, Capanni M, Casucci M, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood. 1999;94:333–339.PubMedGoogle Scholar
  21. 21.
    Shlomchik WD, Couzens MS, Tang CB, et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science. 1999;285:412–415.PubMedCrossRefGoogle Scholar
  22. 22.
    Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caligiuri M. Natural killer cell receptors: new biology and insights into the graft-versusleukemia effect. Blood. 2002;100:1935–1947.PubMedCrossRefGoogle Scholar
  23. 23.
    Velardi A, Ruggeri L, Moretta A, Moretta L. NK-cells: a lesson from mismatched hematopoietic transplantation. Trends Immunol. 2002;23:438–444.PubMedCrossRefGoogle Scholar
  24. 24.
    Mackall CL, Hakim FT, Velardi A. The lympho-hematopoietic system: effector and target of graft-versus-host disease. In: Ferrara JLM, Cooke KR, Deeg J, eds. Graft-vs.-Host Disease. New York, NY: Marcel Dekker; 2004. In press.Google Scholar
  25. 25.
    Davies SM, Ruggeri L, DeFor T, et al. Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants. Blood. 2002;100:3825–3827.PubMedCrossRefGoogle Scholar
  26. 26.
    Giebel S, Locatelli F, Lamparelli T, et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood. 2003;102:814–819.PubMedCrossRefGoogle Scholar
  27. 27.
    Lowe EJ, Turner V, Handgretinger R, et al. T-cell alloreactivity dominates natural killer cell alloreactivity in minimally T-celldepleted HLA-non-identical paediatric bone marrow transplantation. Br J Haematol. 2003;123:323–326.PubMedCrossRefGoogle Scholar
  28. 28.
    Morishima Y, Yabe T, Inoko H, et al. Clinical significance of killer Ig-like receptor (KIR) on acute GvHD, rejection and leukemia relapse in patients transplanted non-T cell depleted marrow from unrelated donor: roles of inhibitory KIR epitope matching and activating KIR genotype [abstract]. Blood. 2003;102:526a.Google Scholar
  29. 29.
    Beelen DW, Ottinger H, Ferencik S, Elmaagacli AH, Peceny R, Grosse-Wilde H. KIR ligand disparities are associated with a decreased risk of relapse after allogeneic stem cell transplantation for myeloid leukaemia. Bone Marrow Transplant. 2004;33:S17.Google Scholar
  30. 30.
    Elmaagacli AH, Ottinger H, Koldehoff M, Peceny R, Trenschel R, Beelen DW. Reduced risk of molecular and haematological relapse in patients with CML after KIR-mismatched haematopoietic stem cell transplantation. Bone Marrow Transplant. 2004;33:S59.Google Scholar
  31. 31.
    Bornhauser M, Schwerdtfeger R, Martin H, Frank KH, Theuser C, Ehninger G. Role of KIR ligand incompatibility in hematopoietic stem cell transplantation using unrelated donors. Blood. 2004;103:2860–2861.PubMedCrossRefGoogle Scholar
  32. 32.
    Shilling HG, McQueen KL, Cheng NW, Shizuru JA, Negrin RS, Parham P. Reconstitution of NK cell receptor repertoire following HLA-matched hematopoietic cell transplantation. Blood. 2003; 101:3730–3740.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2005

Authors and Affiliations

  • Loredana Ruggeri
    • 1
  • Marusca Capanni
    • 1
  • Antonella Mancusi
    • 1
  • Katia Perruccio
    • 1
  • Emanuela Burchielli
    • 1
  • Massimo F. Martelli
    • 1
  • Andrea Velardi
    • 1
  1. 1.Division of Haematology and Clinical Immunology, Department of Clinical and Experimental MedicineUniversity of PerugiaPerugiaItaly

Personalised recommendations