International Journal of Hematology

, Volume 80, Issue 1, pp 29–34 | Cite as

Molecular Mechanisms of Lymphangiogenesis

Article

Abstract

Although the process of vascular development has been well documented, little is understood about lymphatic vasculature formation, despite its importance in normal and pathologic conditions.The dysfunction or abnormal growth of lymphatic vessels is associated with lymphedema and cancer metastasis. The recent discovery of lymphangiogenic growth factors vascular endothelial growth factor (VEGF)-C and VEGF-D and of their receptor,VEGFR-3, on lymphatic endothelial cells has started to provide an understanding of the molecular mechanisms of lymphangiogenesis. In addition, other genes that participate in the specification of lymphatic endothelial cells and the modulation of lymphatic vascular development have been identified. The capacity to induce or inhibit lymphangiogenesis by the manipulation of such molecules offers new opportunities to understand the function of the lymphatic system and to develop novel treatments for lymphatic disorders.This review describes the main players in lymphangiogenesis that have been identified so far and the attempts to shed some light on the mysteries surrounding this process.

Key words

Lymphangiogenesis VEGF-C, -D/VEGFR-3 Prox1 Lymphedema Lymph node metastasis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kubo H, Alitalo K.The bloody fate of endothelial stem cells. Genes Dev. 2003;17:322–329.CrossRefPubMedGoogle Scholar
  2. 2.
    Pardanaud L, Luton D, Prigent M, Bourcheix LM, Catala M, Dieterlen-Lievre F. Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development. 1996;122: 1363–1371.PubMedGoogle Scholar
  3. 3.
    Tischer E, Mitchell R, Hartman T, et al. The human gene for vascular endothelial growth factor: multiple protein forms are encoded through alternative exon splicing. J Biol Chem. 1991;266: 11947–11954.PubMedGoogle Scholar
  4. 4.
    Fong GH, Rossant J, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature. 1995;376:65–69.CrossRefGoogle Scholar
  5. 5.
    Bellomo D, Headrick JP, Silins GU, et al. Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ Res. 2000;86:E29-E35.CrossRefPubMedGoogle Scholar
  6. 6.
    Carmeliet P, Moons L, Luttun A, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med. 2001;7:575–583.CrossRefPubMedGoogle Scholar
  7. 7.
    Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995; 376:62–65.CrossRefPubMedGoogle Scholar
  8. 8.
    Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 1996;15:290–298.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Achen MG, Jeltsch M, Kukk E, et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci U S A. 1998;95:548–553.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Joukov V, Sorsa T, Kumar V, et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 1997;16: 3898–3911.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jeltsch M, Kaipainen A, Joukov V, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science. 1997;276:1423–1425.CrossRefPubMedGoogle Scholar
  12. 12.
    Joukov V, Kumar V, Sorsa T, et al. A recombinant mutant vascular endothelial growth factor-C that has lost vascular endothelial growth factor receptor-2 binding, activation, and vascular permeability activities. J Biol Chem. 1998;273:6599–6602.CrossRefPubMedGoogle Scholar
  13. 13.
    Veikkola T, Jussila L, Makinen T, et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J. 2001;20:1223–1231.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Karkkainen MJ, Haiko P, Sainio K, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol. 2004;5:74–80.CrossRefPubMedGoogle Scholar
  15. 15.
    Dixelius J, Makinen T,Wirzenius M, et al. Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J Biol Chem. 2003;278: 40973–40979.CrossRefPubMedGoogle Scholar
  16. 16.
    Matsumura K, Hirashima M, Ogawa M, et al. Modulation of VEGFR-2-mediated endothelial-cell activity by VEGF-C/ VEGFR-3. Blood. 2003;101:1367–1374.CrossRefPubMedGoogle Scholar
  17. 17.
    Galland F, Karamysheva A, Mattei MG, Rosnet O, Marchetto S, Birnbaum D. Chromosomal localization of FLT4, a novel receptortype tyrosine kinase gene. Genomics. 1992;13:475–478.CrossRefPubMedGoogle Scholar
  18. 18.
    Kaipainen A, Korhonen J, Mustonen T, et al. Expression of the fmslike tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci U S A. 1995; 92:3566–3570.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dumont DJ, Jussila L, Taipale J, et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science. 1998;282: 946–949.CrossRefPubMedGoogle Scholar
  20. 20.
    Mäkinen T, Jussila L, Veikkola T, et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med. 2001;7:199–205.CrossRefPubMedGoogle Scholar
  21. 21.
    Kubo H, Fujiwara T, Jussila L, et al. Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood. 2000;96: 546–553.PubMedGoogle Scholar
  22. 22.
    Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87:1171–1180.CrossRefPubMedGoogle Scholar
  23. 23.
    Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997; 277:55–60.CrossRefPubMedGoogle Scholar
  24. 24.
    Gale NW, Thurston G, Hackett SF, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev Cell. 2002;3:411–423.CrossRefPubMedGoogle Scholar
  25. 25.
    Thurston G. Role of angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis. Cell Tissue Res. 2003;314:61–68.CrossRefPubMedGoogle Scholar
  26. 26.
    Oliver G, Sosa-Pineda B, Geisendorf S, Spana EP, Doe CQ, Gruss P. Prox 1, a prospero-related homeobox gene expressed during mouse development. Mech Dev. 1993;44:3–16.CrossRefPubMedGoogle Scholar
  27. 27.
    Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell. 1999;98:769–778.CrossRefPubMedGoogle Scholar
  28. 28.
    Wigle JT, Harvey N, Detmar M, et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 2002;21:1505–1513.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Petrova TV, Makinen T, Makela TP, et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 2002;21:4593–4599.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Abtahian F, Guerriero A, Sebzda E, et al. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science. 2003;299:247–251.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ferrell RE, Levinson KL, Esman JH, et al. Hereditary lymphedema: evidence for linkage and genetic heterogeneity. Hum Mol Genet. 1998;7:2073–2078.CrossRefPubMedGoogle Scholar
  32. 32.
    Karkkainen MJ, Ferrell RE, Lawrence EC, et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet. 2000;25:153–159.CrossRefPubMedGoogle Scholar
  33. 33.
    Irrthum A, Karkkainen MJ, Devriendt K, Alitalo K, Vikkula M. Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet. 2000;67: 295–301.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Karkkainen MJ, Saaristo A, Jussila L, et al. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci U S A. 2001;98:12677–12682.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Jussila L, Valtola R, Partanen TA, et al. Lymphatic endothelium and Kaposi’s sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor-3. Cancer Res. 1998;58:1599–1604.PubMedGoogle Scholar
  36. 36.
    Su JL, Shih JY, Yen ML, et al. Cyclooxygenase-2 induces EP1- and HER-2/Neu-dependent vascular endothelial growth factor-C upregulation: a novel mechanism of lymphangiogenesis in lung adenocarcinoma. Cancer Res. 2004;64:554–564.CrossRefPubMedGoogle Scholar
  37. 37.
    Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 2001;7:192–198.CrossRefPubMedGoogle Scholar
  38. 38.
    Skobe M, Hamberg LM, Hawighorst T, et al. Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am J Pathol. 2001;159:893–903.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Shimizu K, Satoh S, Kubo H, et al. VEGFR-3 positive vessels as a target of inhibition of lymph node metastasis in gastric cancer. Cancer Sci. In press.Google Scholar
  40. 40.
    He Y, Kozaki K, Karpainen T, et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst. 2002;94:819–825.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2004

Authors and Affiliations

  • Meiko Takahashi
    • 1
  • Takanobu Yoshimoto
    • 1
  • Hajime Kubo
    • 1
  1. 1.Molecular & Cancer Research Unit, HMRO, Graduate School of MedicineKyoto UniversityKyotoJapan

Personalised recommendations