Skip to main content
Log in

Fractional Diffusion-Wave Equations: Hidden Regularity for Weak Solutions

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We prove a “hidden” regularity result for weak solutions of time fractional diffusion-wave equations where the Caputo fractional derivative is of order α ∈ (1, 2). To establish such result we analyse the regularity properties of the weak solutions in suitable interpolation spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Bociu, J.-P. Zolésio, A pseudo-extractor approach to hidden boundary regularity for the wave equation with mixed boundary conditions. J. Differential Equations, 259 No 11 (2015), 5688–5708.

    Article  MathSciNet  Google Scholar 

  2. H. Brezis Analyse Fonctionnelle. Théorie et Applications, Masson, Paris (1983).

    MATH  Google Scholar 

  3. Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation. Osaka J. Math, 27 No 2 (1990), 309–321.

    MathSciNet  MATH  Google Scholar 

  4. R. Gorenflo, F. Mainardi. Fractional calculus: Integral and differential equations of fractional order. Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, New York (1997), 223–276.

    Chapter  Google Scholar 

  5. R. Gorenflo, M. Yamamoto, Operator theoretic treatment of linear Abel integral equations of first kind. Japan J. Indust. Appl. Math, 16 No 1 (1999), 137–161.

    Article  MathSciNet  Google Scholar 

  6. R. Gorenflo, Y. Luchko, M. Yamamoto, Time-fractional diffusion equation in the fractional Sobolev spaces. Fract. Calc. Appl. Anal, 18 No 3 (2015), 799–820 10.1515/fca-2015-0048 https://www.degruyter.com/journal/key/FCA/18/3/html.

    Article  MathSciNet  Google Scholar 

  7. Y. Kian, M. Yamamoto, Well-posedness for weak and strong solutions of non-homogeneous initial boundary value problems for fractional diffusion equations. Fract. Calc. Appl. Anal, 24 No 1 (2021), 168–201 10.1515/fca-2021-0008 https://www.degruyter.com/journal/key/FCA/24/1/html.

    Article  MathSciNet  Google Scholar 

  8. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  9. V. Komornik Exact Controllability and Stabilization. The Multiplier Method, Masson, Paris. John Wiley and Sons, Ltd., Chichester (1994).

    MATH  Google Scholar 

  10. I. Lasiecka, R. Triggiani, Regularity of hyperbolic equations under L2(0, T; L2(Γ))-Dirichlet boundary terms. Appl. Math. Optim, 10 No 3 (1983), 275–286.

    Article  MathSciNet  Google Scholar 

  11. J.-L. Lions, Hidden regularity in some nonlinear hyperbolic equations. Mat. Apl. Comput, 6 No 1 (1987), 7–15.

    MathSciNet  MATH  Google Scholar 

  12. J.-L. Lions Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués I-II, Masson, Paris (1988).

    MATH  Google Scholar 

  13. P. Loreti, D. Sforza, Hidden regularity for wave equations with memory. Riv. Math. Univ. Parma (N.S.), 7 No 2 (2016), 391–405.

    MathSciNet  MATH  Google Scholar 

  14. P. Loreti, D. Sforza. A semilinear integro-differential equation: global existence and hidden regularity. Trends in Control Theory and Partial Differential Equations, Springer, Cham (2019), 157–180.

    Chapter  Google Scholar 

  15. A. Lunardi Interpolation Theory, Edizioni della Normale, Pisa (2018).

    Book  Google Scholar 

  16. Y. Luchko, F. Mainardi, Y. Povstenko, Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation. Comput. Math. Appl, 66 No 5 (2013), 774–784.

    Article  MathSciNet  Google Scholar 

  17. F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett, 9 No 6 (1996), 23–28.

    Article  MathSciNet  Google Scholar 

  18. M. Milla Miranda, L.A. Medeiros, Hidden regularity for semilinear hyperbolic partial differential equations. Ann. Fac. Sci. Toulouse Math. (5), 9 No 1 (1988), 103–120.

    Article  MathSciNet  Google Scholar 

  19. A. Pazy Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin (1983).

    Book  Google Scholar 

  20. I. Podlubny Fractional Differential Equations, Academic Press, San Diego (1999).

    MATH  Google Scholar 

  21. Y. Povstenko Linear Fractional Diffusion–Wave Equation for Scientists and Engineers, Birkhäuser, Cham (2015).

    Book  Google Scholar 

  22. K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl, 382 No 1 (2011), 426–447.

    Article  MathSciNet  Google Scholar 

  23. S.G. Samko, A.A. Kilbas, O.I. Marichev Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Philadelphia (1993).

    MATH  Google Scholar 

  24. M. Stynes, Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal, 19 No 6 (2016), 1554–1562 10.1515/fca-2016-0080 https://www.degruyter.com/journal/key/FCA/19/6/html.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Sforza.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loreti, P., Sforza, D. Fractional Diffusion-Wave Equations: Hidden Regularity for Weak Solutions. Fract Calc Appl Anal 24, 1015–1034 (2021). https://doi.org/10.1515/fca-2021-0044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2021-0044

MSC 2010

Key Words and Phrases

Navigation