Skip to main content
Log in

Existence and Approximate Controllability of Fractional Evolution Equations with Nonlocal Conditions Via Resolvent Operators

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this article, we are concerned with the existence of mild solutions as well as approximate controllability for a class of fractional evolution equations with nonlocal conditions in Banach spaces. Sufficient conditions of existence of mild solutions and approximate controllability for the desired problem are presented by introducing a new Green’s function and constructing a control function involving Gramian controllability operator. The discussions are based on Schauder’s fixed point theorem as well as the theory of α-order solution operator and α-order resolvent operator. An example is given to illustrate the feasibility of our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Abada, M. Benchohra, H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions. J. Differential Equations 246 No 10 (2009), 3834–3863.

    MathSciNet  MATH  Google Scholar 

  2. R.P. Agarwal, V. Lakshmikantham, J.J. Nieto, On the concept of solutions for fractional differential equations with uncertainly. Nonlinear Anal. 72 No 6 (2010), 2859–2862.

    MathSciNet  MATH  Google Scholar 

  3. D. Araya, C. Lizama, Almost automorphic mild solutions to fractional differential equations. Nonlinear Anal. 69 No 11 (2008), 3692–3705.

    MathSciNet  MATH  Google Scholar 

  4. E.G. Bajlekova, Fractional Evolution Equations in Banach Spaces. PhD Thesis, Department of Mathematics, Eindhoven University of Technology (2001).

    MATH  Google Scholar 

  5. A. Boucherif, Semilinear evolution inclutions with nonlocal conditions. Appl. Math. Letters 22 No 8 (2009), 1145–1149.

    MathSciNet  MATH  Google Scholar 

  6. L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162 No 2 (1991), 494–505.

    MathSciNet  MATH  Google Scholar 

  7. L. Byszewski, Existence and uniqueness of a classical solutions to a functional-differential abstract nonlocal Cauchy problem. J. Math. Appl. Stoch. Anal. 12 No 1 (1999), 91–97.

    MathSciNet  MATH  Google Scholar 

  8. Y.K. Chang, A. Pereira, R. Ponce, Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators. Fract. Calc. Appl. Anal. 20 No 4 (2017), 963–987; DOI: 10.1515/fca-2017-0050; https://www.degruyter.com/view/j/fca.2017.20.issue-4/issue-files/fca.2017.20.issue-4.xml.

    MathSciNet  MATH  Google Scholar 

  9. P. Chen, Y. Li, Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions. Z. Angew. Math. Phys. 65 No 4 (2014), 711–728.

    MathSciNet  MATH  Google Scholar 

  10. C. Chen, M. Li, On fractional resolvent operator functions. Semigroup Forum 80 No 1 (2010), 121–142.

    MathSciNet  MATH  Google Scholar 

  11. C. Chen, M. Li, F.B. Li, On boundary values of fractional resolvent families. J. Math. Anal. Appl. 384 No 2 (2011), 453–467.

    MathSciNet  MATH  Google Scholar 

  12. P. Chen, X. Zhang, Y. Li, Nonlocal problem for fractional stochastic evolution equations with solution operators. Fract. Calc. Appl. Anal. 19 No 6 (2016), 1507–1526; DOI: 10.1515/fca-2016-0078; https://www.degruyter.com/view/j/fca.2016.19.issue-6/issue-files/fca.2016.19.issue-6.xml.

    MathSciNet  MATH  Google Scholar 

  13. P. Chen, X. Zhang, Y. Li, Study on fractional non-autonomous evolution equations with delay. Comput. Math. Appl. 73 No 5 (2017), 794–803.

    MathSciNet  MATH  Google Scholar 

  14. P. Chen, X. Zhang, Y. Li, Approximation technique for fractional evolution equations with nonlocal integral conditions. Mediterr. J. Math. 14 No 6 (2017) Art. 226.

    MathSciNet  MATH  Google Scholar 

  15. P. Chen, X. Zhang, Y. Li, A blowup alternative result for fractional nonautonomous evolution equation of Volterra type. Commun. Pure Appl. Anal. 17 No 5 (2018), 1975–1992.

    MathSciNet  MATH  Google Scholar 

  16. K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. Math. Anal. Appl. 179 No 2 (1993), 630–637.

    MathSciNet  MATH  Google Scholar 

  17. M.M. EI-Borai, Some probability densities and fundamental solutions of fractional evolution equations. Chaos Solitons Fractals 14 No 3 (2002), 433–440.

    MathSciNet  MATH  Google Scholar 

  18. K. Ezzinbi, X. Fu, K. Hilal, Existence and regularity in the α-norm for some neutral partial differential equations with nonlocal conditions. Nonlinear Anal. 67 No 5 (2007), 1613–1622.

    MathSciNet  MATH  Google Scholar 

  19. Z. Fan, Characterization of compactness for resolvents and its applications. Appl. Math. Comput. 232 No 1 (2014), 60–67.

    MathSciNet  MATH  Google Scholar 

  20. Z. Fan, Q. Dong, G. Li, Approximate controllability for semilinear composite fractional relaxation equations. Fract. Calc. Appl. Anal. 19 No 1 (2016), 267–284; DOI: 10.1515/fca-2016-0015; https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml.

    MathSciNet  MATH  Google Scholar 

  21. X. Fu, Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay. Evol. Equ. Control Theory 6 No 4 (2017), 517–534.

    MathSciNet  MATH  Google Scholar 

  22. H. Gou, B. Li, Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup. Commun. Nonlinear Sci. Numer. Simul. 42 No 1 (2017), 204–214.

    MathSciNet  MATH  Google Scholar 

  23. J. Jia, J. Peng, K. Li, Well-posedness of abstract distributed-order fractional diffusion equations. Commun. Pure Appl. Anal. 13 No 2 (2014), 605–621.

    MathSciNet  MATH  Google Scholar 

  24. R.E. Kalman, Controllablity of linear dynamical systems. Contrib. Diff. Equ. 1 No 1 (1963), 189–213.

    Google Scholar 

  25. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Vol. 204, Elsevier Science B.V., Amsterdam (2006).

    MATH  Google Scholar 

  26. M. Li, C. Chen, F.B. Li, On fractional powers of generators of fractional resolvent families. J. Funct. Anal. 259 No 10 (2010), 2702–2726.

    MathSciNet  MATH  Google Scholar 

  27. K. Li, J. Peng, Fractional abstract Cauchy problems. Integr. Equ. Oper. Theory 70 No 3 (2011), 333–361.

    MathSciNet  MATH  Google Scholar 

  28. K. Li, J. Peng, Fractional resolvents and fractional evolution equations. Appl. Math. Lett. 25 No 5 (2012), 808–812.

    MathSciNet  MATH  Google Scholar 

  29. K. Li, J. Peng, J. Jia, Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives. J. Funct. Anal. 263 No 2 (2012), 476–510.

    MathSciNet  MATH  Google Scholar 

  30. T. Lian, Z. Fan, G. Li, Approximate controllability of semilinear fractional differential systems of order 1 < q < 2 via resolvent operators. Filomat 31 No 18 (2017), 5769–5781.

    MathSciNet  Google Scholar 

  31. J. Liang, H. Yang, Controllability of fractional integro-differential evolution equations with nonlocal conditions. Appl. Math. Comput. 254 No 1 (2015), 20–29.

    MathSciNet  MATH  Google Scholar 

  32. Z. Liu, X. Li, D. Motreanu, Approximate controllability for nonlinear evolution hemivariational inequalities in Hilbert spaces. SIAM J. Control Optim. 53 No 5 (2015), 3228–3244.

    MathSciNet  MATH  Google Scholar 

  33. Z. Liu, X. Li, Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives. SIAM J. Control Optim. 53 No 4 (2015), 1920–1933.

    MathSciNet  MATH  Google Scholar 

  34. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  35. T. Poinot, J.C. Trigeassou, Identification of fractional systems using an output-error technique. Nonl. Dynamics 38 No 1 (2004), 133–154.

    MathSciNet  MATH  Google Scholar 

  36. J. Prüss, Evolutionary Integral Equations and Applications. Birkhäuser Verlag, Basel (1993).

    MATH  Google Scholar 

  37. Y.A. Rossikhin, M.V. Shitikova, Application of fractional dericatives to the analysis of damped vibrations of viscoelastic single mass system. Acta. Mech. 120 No 1 (1997), 109–125.

    MathSciNet  MATH  Google Scholar 

  38. X. Shu, Y. Shi, A study on the mild solution of impulsive fractional evolution equations. Appl. Math. Comput. 273 No 1 (2016), 465–476.

    MathSciNet  MATH  Google Scholar 

  39. M.S. Tavazoei, M. Haeri, S. Jafari, S. Bolouki, M. Siami, Some applications of fractional calculus in suppression of chaotic oscillations. IEEE Trans. on Industrial Electronics 11 No 11 (2008), 4094–4101.

    Google Scholar 

  40. D. Valério, M.D. Ortigueira, J.A. Tenreiro Machado, A.M. Lopes, Continuous-time fractional linear systems: steady-state responses. In: Handbook of Fractional Calculus with Applications 6 De Gruyter, Berlin (2019), 149–174.

    MathSciNet  Google Scholar 

  41. R.N. Wang, D.H. Chen, T.J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators. J. Differential Equations 252 No 1 (2012), 202–235.

    MathSciNet  MATH  Google Scholar 

  42. J. Wang, M. Fec̆kan, Y. Zhou, Approximate controllability of Sobolev type fractional evolution systems with nonlocal conditions. Evol. Equ. Control Theory 6 No 3 (2017), 471–486.

    MathSciNet  Google Scholar 

  43. R. Wang, T.J. Xiao, J. Liang, A note on the fractional Cauchy problems with nonlocal conditions. Appl. Math. Letters 24 No 8 (2011), 1435–1442.

    MathSciNet  MATH  Google Scholar 

  44. J. Wang, Y. Zhou, A class of fractional evolution equations and optimal controls. Nonlinear Anal. Real World Appl. 12 No 1 (2011), 263–272.

    MathSciNet  Google Scholar 

  45. J. Wang, Y. Zhou, M. Fec̆kan, Abstract Cauchy problem for fractional differential equations. Nonlinear Dyn. 74 No 4 (2013), 685–700.

    MathSciNet  Google Scholar 

  46. S. Westerlund, L. Ekstam, Capacitor theory. IEEE Trans. on Dielectrics and Electrical Insulation 1 No 5 (1994), 826–839.

    Google Scholar 

  47. T.J. Xiao, J. Liang, Existence of classical solutions to nonautonomous nonlocal parabolic problems. Nonlinear Anal. 63 No 5-7 (2005), 225–232.

    MathSciNet  MATH  Google Scholar 

  48. Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59 No 3 (2010), 1063–1077.

    MathSciNet  MATH  Google Scholar 

  49. Y. Zhou, V. Vijayakumar, R. Murugesu, Controllability for fractional evolution inclusions without compactness. Evol. Equ. Control Theory 4 No 4 (2015), 507–524.

    MathSciNet  MATH  Google Scholar 

  50. Y. Zhou, V. Vijayakumar, C. Ravichandran, R. Murugesu, Controllability results for fractional order neutral functional differential inclusions with infinite delay. Fixed Point Theory 18 No 2 (2017), 773–798.

    MathSciNet  MATH  Google Scholar 

  51. B. Zhu, L. Liu, Y. Wu, Local and global existence of mild solutions for a class of semilinear fractional integro-differential equations. Fract. Calc. Appl. Anal. 20 No 6 (2017), 1338–1355; DOI: 10.1515/fca-2017-0071; https://www.degruyter.com/view/j/fca.2017.20.issue-6/issue-files/fca.2017.20.issue-6.xml.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengyu Chen.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Zhang, X. & Li, Y. Existence and Approximate Controllability of Fractional Evolution Equations with Nonlocal Conditions Via Resolvent Operators. Fract Calc Appl Anal 23, 268–291 (2020). https://doi.org/10.1515/fca-2020-0011

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0011

MSC 2010

Key Words and Phrases

Navigation