Skip to main content
Log in

Space-time fractional stochastic partial differential equations with Lévy noise

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We consider non-linear time-fractional stochastic heat type equation

$$\frac{{{\partial ^\beta }u}}{{\partial {t^\beta }}} + v{\left( { - \Delta } \right)^{\alpha /2}}u = I_t^{1 - \beta }\left[ {\int_{{^d}} {\sigma \left( {u\left( {t,x} \right),h} \right)\tilde N} \left( {t,x,h} \right)} \right]$$

and

$$\frac{{{\partial ^\beta }u}}{{\partial {t^\beta }}} + v{\left( { - \Delta } \right)^{\alpha /2}}u = I_t^{1 - \beta }\left[ {\int_{{^d}} {\sigma \left( {u\left( {t,x} \right),h} \right)N} \left( {t,x,h} \right)} \right]$$

in (d + 1) dimensions, where α ∈ (0, 2] and d < min{2, β−1}α, ν > 0, \(\partial _t^{^\beta }\) is the Caputo fractional derivative, −(−Δ)α/2 is the generator of an isotropic stable process, \(I_t^{1 - \beta }\) is the fractional integral operator, N(t, x) are Poisson random measure with Ñ(t, x) being the compensated Poisson random measure. σ: ℝ → ℝ is a Lipschitz continuous function. We prove existence and uniqueness of mild solutions to this equation. Our results extend the results in the case of parabolic stochastic partial differential equations obtained in [16, 33]. Under the linear growth of σ, we show that the solution of the time fractional stochastic partial differential equation follows an exponential growth with respect to the time. We also show the nonexistence of the random field solution of both stochastic partial differential equations when σ grows faster than linear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Anh, N. Leonenko, M. Ruiz-Medina, Space-time fractional stochastic equations on regular bounded open domains. Fract. Calc. Appl. Anal. 19 No 5 (2016), 1161–1199; DOI: 10.1515/fca-2016-0061; https://www.degruyter.com/view/j/fca.2016.19.issue-5/issue-files/fca.2016.19.issue-5.xml.

    Article  MathSciNet  Google Scholar 

  2. V. Anh, N. Leonenko, M. Ruiz-Medina, Fractional-in-time and multifractional-in-space stochastic partial differential equations. Fract. Calc. Appl. Anal. 19 No 6 (2016), 1434–1459; DOI: 10.1515/fca-2016-0074; https://www.degruyter.com/view/j/fca.2016.19.issue-6/issue-files/fca.2016.19.issue-6.xml.

    Article  MathSciNet  Google Scholar 

  3. W. Arendt, C. Batty, M. Hieber, F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems., Second Monographs in Mathematics 96, Springer, Berlin (2011).

    Book  Google Scholar 

  4. S. Asogwa, J.B. Mijena, E. Nane, Blow-up results for space-time fractional stochastic partial differential equations. Potential Anal. (Online: March 2019); DOI: 10.1007/s11118-019-09772-0.

    Google Scholar 

  5. B. Baeumer, M.M. Meerschaert, Stochastic solutions for fractional Cauchy problems. Fract. Calc. Appl. Anal. 4 No 4 (2001), 481–500.

    MathSciNet  MATH  Google Scholar 

  6. B. Baeumer, M.M. Meerschaert, E. Nane, Brownian subordinators and fractional Cauchy problems. Trans. Amer. Math. Soc. 361 (2009), 3915–3930.

    Article  MathSciNet  Google Scholar 

  7. R. Balan, SPDE with α-stable Lévy noise: a random field approach. Intern. J. of Stochastic Analysis (2014), 22; Article ID 793275.

    Google Scholar 

  8. J. Bertoin, Lévy Processes. Cambridge University Press, Cambridge (1996).

    MATH  Google Scholar 

  9. J. Bao, C. Yaun, Blow-up for stochastic reaction-diffusion equations with jumps. J. Theor. Probab. 29 (2016), 617–631.

    Article  MathSciNet  Google Scholar 

  10. R. Carmona, S.A. Molchanov, Parabolic Anderson Problem and Intermittency. Mem. Amer. Math. Soc. 108 No 518 (1994), viii–125.

    Google Scholar 

  11. P. Carr, H. Gemen, D.B. Madan, M. Yor, The fine structure of asset returns: an empirical investigation. J. Bus. 75 (2002), 305–332.

    Article  Google Scholar 

  12. P. Carr, H. Gemen, D.B. Madan, M. Yor, Stochastic volatility of Lévy processes. Math. Financ. 13 (2003), 345–382.

    Article  Google Scholar 

  13. Z.-Q. Chen, Time fractional equations and probabilistic representation. Chaos, Solitons, Fractals 102 (2017), 168–174.

    Article  MathSciNet  Google Scholar 

  14. Z.-Q. Chen, K.-H. Kim, P. Kim, Fractional time stochastic partial differential equations. Stochastic Process Appl. 125 (2015), 1470–1499.

    Article  MathSciNet  Google Scholar 

  15. M. Foondun, W. Liu, E. Nane, Some non-existence results for a class of stochastic partial differential equations. J. Differential Equations 266 No 5 (2019), 2575–2596.

    Article  MathSciNet  Google Scholar 

  16. M. Foondun, D. Khoshnevisan, Intermittence and nonlinear parabolic stochastic partial differential equations. Electron. J. Probab. 14 (2009), 548–568.

    MathSciNet  MATH  Google Scholar 

  17. M. Foodun, E. Nane, Asymptotic properties of some space-time fractional stochastic equations. Math. Z. 287 (2017), 493–519.

    Article  MathSciNet  Google Scholar 

  18. M. Foodun, J.B. Mijena, E. Nane, Non-linear noise excitation for some space-time fractional stochastic equations in bounded domains. Fract. Calc. Appl. Anal. 19 No 6 (2016), 1527–1553; DOI: 10.1515/fca-2016-0079; https://www.degruyter.com/view/j/fca.2016.19.issue-6/issue-files/fca.2016.19.issue-6.xml.

    Article  MathSciNet  Google Scholar 

  19. O. Kallenberg, Foundations of Modern Probability., Second Springer, New York (2002).

    Book  Google Scholar 

  20. D. Khoshnevisan, Analysis of Stochastic Partial Differential Equations. In: CBMS Regional Conf. Ser. in Mat., 119. Publ. for the Conference Board of the Math. Sci.. Washington, DC. by Amer. Math. Soc., Providence, RI (2014).

    Google Scholar 

  21. J. Klafter, I.M. Sokolov, Anomalous diffustion speads its wings. Phys. World 18 (2005), 29–32.

    Article  Google Scholar 

  22. J. Klafter, Beyond Brownian motion. Phys. Today 49 (1996), 33–39.

    Article  Google Scholar 

  23. K. Li, J. Peng, J. Jia, Explosive solutions of parabolic stochastic equations with Lévy noise. Discrete Contin. Dyn. Syst. Ser A. 37 (2017), 5105–5125.

    Article  Google Scholar 

  24. M.M. Meerschaert, A. Sikorskii, Stochastic Models for Fractional Calculus. De Gruyter, Berlin (2011).

    Book  Google Scholar 

  25. M.M. Meerschaert, H. Scheffler, Limit theorems for continuous time random walks with infinite mean waiting times. J. Appl. Prob. 41 (2004), 623–638.

    Article  MathSciNet  Google Scholar 

  26. M.M. Meerschaert, P. Straka, Inverse stable subordinators. Math. Model. Nat. Problem. 8 (2013), 1–16.

    Article  MathSciNet  Google Scholar 

  27. M.M. Meerschaert, R.L. Magin, A.Q. Ye, Anisotropic fractional diffusion tensor imaging. J. Vib. Control. 22 (2016), 2211–2221.

    Article  MathSciNet  Google Scholar 

  28. R. Metzler, J. Klafter, The random walks’ guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1–77.

    Article  MathSciNet  Google Scholar 

  29. J. Mijena, E. Nane, Space time fractional stochastic partial differential equations. Stoch. Process. Their. Appl. 125 (2015), 3301–3326.

    Article  MathSciNet  Google Scholar 

  30. E.M. Omaba, E. Nawaeze, L.O. Omenyi, On non-existence of Global weakpredictable random field solutions to a class of SHEs. Asian Res. J. Math. 4 (2017), 1–14.

    Article  Google Scholar 

  31. A. Patel, B. Kosko, Stochastic resonance in continuous and spiking neuron models with Lévy noise. IEEE Trans. Neural Netw. 19 (2008), 1993–2008.

    Article  Google Scholar 

  32. S. Umarov, E. Saydamatov, A fractional analog of the Duhamel principle. Fract. Calc. Appl. Anal. 9 No 1 (2006), 57–70.

    MathSciNet  MATH  Google Scholar 

  33. J.B. Walsh, An Introduction to Stochastic Partial Differential Equations. Écoleďété de Probabilités de Saint-Flour, XIV∣1984. Lecture Notes in Math. Vol. 1180, Springer, Berlin (1986), 265–439.

    Google Scholar 

  34. Y.B. Zeľdovich, S.A. Molchanov, A.A. Ruzmaikin, D.D. Sokolov, Intermittency in random media. Usp. Fiz. Nauk 152 (1987), 3–32.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangqian Meng.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Nane, E. Space-time fractional stochastic partial differential equations with Lévy noise. Fract Calc Appl Anal 23, 224–249 (2020). https://doi.org/10.1515/fca-2020-0009

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0009

MSC 2010

Key Words and Phrases

Navigation