Skip to main content
Log in

A Comment on a Controversial Issue: A Generalized Fractional Derivative Cannot Have a Regular Kernel

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The problem whether a given pair of functions can be used as the kernels of a generalized fractional derivative and the associated generalized fractional integral is reduced to the problem of existence of a solution to the Sonine equation. It is shown for some selected classes of functions that a necessary condition for a function to be the kernel of a fractional derivative is an integrable singularity at 0. It is shown that locally integrable completely monotone functions satisfy the Sonine equation if and only if they are singular at 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to a heat transfer model. Therm. Sci. 20 (2016), 763–769.

    Article  Google Scholar 

  2. N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation. Cambridge University Press, Cambridge (1989).

    MATH  Google Scholar 

  3. M. Caputo, M. Fabrizio, A new definition of a fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2 (2015), 1–11.

    Article  Google Scholar 

  4. A.V. Chechkin, R. Gorenflo, I.M. Sokolov, V.Yu. Gonchar, Distributed order time fractional diffusion equation. Fract. Calc. Anal. Appl. 6 No 3 (2003), 259–280.

    MathSciNet  MATH  Google Scholar 

  5. A. Giusti, A comment on some new definitions of fractional derivative. Nonlinear Dyn. 93 (2018), 1757–1763.

    Article  Google Scholar 

  6. G. Gripenberg, S.-O. Londen, O. Staffans, Volterra integral and Functional Equations. Cambridge University Press, Cambridge (1990).

    Book  Google Scholar 

  7. A. Hanyga, Wave propagation in linear viscoelastic media with completely monotonic relaxation moduli. Wave Motion 50 (2013), 909–928; DOI: 10.1016/j.wavemoti.2013.03.002.

    Article  MathSciNet  Google Scholar 

  8. A. Hanyga, Anomalous diffusion without scale invariance. J. Phys. A: Mathematical and Theoretical 40 No 21 (2007), 5551–5564; DOI: 10.1088/1751-8113/40/21/007.

    Article  MathSciNet  Google Scholar 

  9. A. Hanyga, On solutions of matrix-valued convolution equations, CM-derivatives and their application in linear and non-linear anisotropic viscoelasticity. Z. Angew. Math. Phys. 70 (2019), Art. # 103; DOI: 10.1007/s00033-019-1146-7.

    Article  MathSciNet  Google Scholar 

  10. A. Hanyga, Effects of Newtonian viscosity and relaxation on linear viscoelastic wave propagation. Arch. Appl. Mech.; DOI: 10.1007/s00419-019-01620-2; (also arXiv:1903.03814).

  11. A.N. Kochubei, General fractional calculus, evolution equations and renewal processes. Integral Equations Oper. Theor. 71 (2011), 583–600.

    Article  MathSciNet  Google Scholar 

  12. M.D. Ortigueira, J. Tenreiro Machado, A critical analysis of the Caputo-Fabrizio operator. Commun. Nonl. Sci. and Numer. Simul. 59 (2018), 608–611.

    Article  MathSciNet  Google Scholar 

  13. M.D. Ortigueira, V. Martynyuk, M. Fedula, J. Tenreiro Machado, The failure of certain fractional calculus operators in two physical models. Fract. Calc. Appl. Anal. 22 No 2 (2019), 255–270; DOI: 10.1515/fca-2019-0017; https://www.degruyter.com/view/j/fca.2019.22.issue-2/issue-files/fca.2019.22.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  14. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  15. S. Qureshi, N.A. Rangaig, D. Baleanu, New numerical aspects of Caputo-Fabrizio fractional derivative operator. Mathematics 7 (2019), Art. # 379.

    Article  Google Scholar 

  16. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. In: Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993).

    MATH  Google Scholar 

  17. S.G. Samko, R.P. Cardoso, Integral equations of the first kind of Sonine type. Intern. J. Math. Sci. 57 (2003), 3609–3632.

    Article  MathSciNet  Google Scholar 

  18. R.L. Schilling, R. Song, Z. Vondraček, Bernstein Functions: Theory and Applications. Walter De Gruyter, Berlin-Boston (2012).

    Book  Google Scholar 

  19. M. Stynes, Fractional-order derivatives defined by continuous kernels are too restrictive. Appl. Math. Lett. 85 (2018), 22–26.

    Article  MathSciNet  Google Scholar 

  20. V.E. Tarasov, No nonlocality. No fractional derivative. Commun. Nonl. Sci. and Numer. Simul. 62 (2018), 157–163.

    Article  MathSciNet  Google Scholar 

  21. J. Wick, Über eine Integralgleichung vom Abelschen Typ. Z. Angew. Math. Mech. 48 (1968), T39–T41.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Hanyga.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanyga, A. A Comment on a Controversial Issue: A Generalized Fractional Derivative Cannot Have a Regular Kernel. Fract Calc Appl Anal 23, 211–223 (2020). https://doi.org/10.1515/fca-2020-0008

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0008

MSC 2010

Key Words and Phrases

Navigation