Skip to main content
Log in

Stability and Resonance Analysis of a General Non-Commensurate Elementary Fractional-Order System

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The elementary fractional-order models are the extension of first and second order models which have been widely used in various engineering fields. Some important properties of commensurate or a few particular kinds of non-commensurate elementary fractional-order transfer functions have already been discussed in the existing studies. However, most of them are only available for one particular kind elementary fractional-order system. In this paper, the stability and resonance analysis of a general kind non-commensurate elementary fractional-order system is presented. The commensurate-order restriction is fully released. Firstly, based on Nyquist’s Theorem, the stability conditions are explored in details under different conditions, namely different combinations of pseudo-damping (ζ) factor values and order parameters. Then, resonance conditions are established in terms of frequency behaviors. At last, an example is given to show the stable and resonant regions of the studied systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Q. Chen, K. L. Moore, Analytical stability bound for a class of delayed fractional-order dynamic systems. Nonlinear Dynam. 29 No 1–4 (2002), 191–200.

    Article  MathSciNet  Google Scholar 

  2. Z. Dai, P. Ying, H. A. Mansy, R. H. Sandler, T. J. Royston, A model of lung parenchyma stress relaxation using fractional viscoelasticity. Med. Eng. Phys. 37 No 8 (2015), 752–758.

    Article  Google Scholar 

  3. S. Das, S. Das, A. Gupta, Fractional order modeling of a PHWR under step-back condition and control of its global power with a robust PIλ Dμ controller. IEEE Trans. Nucl. Sci. 58 No 5 (2012), 2431–2441.

    Article  Google Scholar 

  4. W. Deng, C. Li, J. Lu, Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dynam. 48 No 4 (2007), 409–416.

    Article  MathSciNet  Google Scholar 

  5. A. S. Elwakil, Fractional-order circuits and systems: An emerging interdisciplinary research area. IEEE Circ. Syst. Mag. 10 No 4 (2010), 40–50.

    Article  Google Scholar 

  6. J. D. Gabano, T. Poinot, H. Kanoun, LPV continuous fractional modeling applied to ultracapacitor impedance identification. Control Eng. Pract. 45 (2015), 86–97.

    Article  Google Scholar 

  7. R. K. H. Galvao, S. Hadjiloucas, K. H. Kienitz, H. M. Paiva, Fractional order modeling of large three-dimensional RC networks. IEEE Trans. Circuits-I. 60 No 3 (2013), 624–637.

    MathSciNet  MATH  Google Scholar 

  8. F. Ge, Y. Q. Chen, C. Kou, I. Podlubny, On the regional controllability of the sub-diffusion process with caputo fractional derivative. Fract. Calc. Appl. Anal. 19 No 5 (2016), 1262–1281; DOI: 10.1515/fca-2016-0065; https://www.degruyter.com/view/j/fca.2016.19.issue-5/issue-files/fca.2016.19.issue-5.xml.

    Article  MathSciNet  Google Scholar 

  9. S. E. Hamamci, An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers. IEEE Trans. Automat. Contr. 52 No 10 (2007), 1964–1969.

    Article  MathSciNet  Google Scholar 

  10. A. B. Hmed, M. Amairi, M. Aoun, Stability and resonance conditions of the non-commensurate elementary fractional transfer functions of the second kind. Commun. Nonlinear Sci. 22 No 1–3 (2015), 842–865.

    Article  MathSciNet  Google Scholar 

  11. E. Ivanova, X. Moreau, R. Malti, Stability and resonance conditions of second-order fractional systems. J. Vib. Control 24 No 4 (2018), 659–672.

    Article  MathSciNet  Google Scholar 

  12. Z. Jiao, Y. Q. Chen, Stability analysis of fractional-order systems with double noncommensurate orders for matrix case. Fract. Calc. Appl. Anal. 14 No 3 (2011), 436–453; DOI: 10.2478/s13540-011-0027-3; https://www.degruyter.com/view/j/fca.2011.14.issue-3/issue-files/fca.2011.14.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  13. G. Lazović, Z. Vosika, M. Lazarević, J. Simic-Krstić, D. Koruga, Modeling of bioimpedance for human skin based on fractional distributed-order modified cole model. FME T. 42 No 1 (2014), 74–81.

    Article  Google Scholar 

  14. Y. Li, Y. Q. Chen, I. Podlubny, Mittag–leffler stability of fractional order nonlinear dynamic systems. Automatica 45 No 8 (2009), 1965–1969.

    Article  MathSciNet  Google Scholar 

  15. L. Liu, S. Tian, D. Xue, T. Zhang, Y. Q. Chen, Continuous fractional-order Zero Phase Error Tracking Control. ISA T. 75 (2018), 226–235.

    Article  Google Scholar 

  16. L. Liu, D. Xue, S. Zhang, Closed-loop time response analysis of irrational fractional-order systems with numerical Laplace transform technique. Appl. Math. Comput. 350 (2018), 133–152.

    MathSciNet  MATH  Google Scholar 

  17. L. Liu, S. Zhang, D. Xue, Y. Q. Chen, Robust stability analysis for fractional-order systems with time delay based on finite spectrum assignment. Int. J. Robust. Nonlin. 29 No 8 (2019), 2283–2295.

    Article  MathSciNet  Google Scholar 

  18. A. M. Lopes, J. A. T. Machado, E. Ramalho, V. Silva, Milk characterization using electrical impedance spectroscopy and fractional models. Food Anal. Method. 11 No 3 (2018), 901–912.

    Article  Google Scholar 

  19. R. L. Magin, Fractional Calculus in Bioengineering. Begell House Redding (2006).

    Google Scholar 

  20. R. Malti, X. Moreau, F. Khemane, Resonance and stability conditions for fractional transfer functions of the second kind. In: New Trends in Nanotechnology and Fractional Calculus Applications, Dordrecht (2010), 429–444.

    Chapter  Google Scholar 

  21. R. Malti, X. Moreau, F. Khemane, A. Oustaloup, Stability and resonance conditions of elementary fractional transfer functions. Automatica 47 No 11 (2011), 2462–2467.

    Article  MathSciNet  Google Scholar 

  22. A. Oustaloup, J. Sabatier, P. Lanusse, R. Malti, P. Melchior, X. Moreau, M. Moze, An overview of the CRONE approach in system analysis, modeling and identification, observation and control. In: Proc. of the 17th World Congress. Seoul (2008), 14254–14265.

    Google Scholar 

  23. I. Petras, Stability of fractional-order systems. Fract. Calc. Appl. Anal. 10 No 3 (2008), 269–298.

    MathSciNet  MATH  Google Scholar 

  24. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  25. D. Sierociuk, T. Skovranek, M. Macias, I. Podlubny, I. Petras, A. Dzielinski, P. Ziubinski, Diffusion process modeling by using fractional-order models. Appl. Math. Comput. 257 No C (2015), 2–11.

    Google Scholar 

  26. V. E. Tarasov, Fractional hydrodynamic equations for fractal media. Ann. Phys. 318 No 2 (2005), 286–307.

    Article  MathSciNet  Google Scholar 

  27. M. S. Tavazoei, M. Haeri, S. Bolouki, M. Siami, Stability preservation analysis for frequency-based methods in numerical simulation of fractional order systems. SIAM J. Numer. Anal. 47 No 1 (2008), 321–338.

    Article  MathSciNet  Google Scholar 

  28. D. Valerio, J. S. da Costa, A review of tuning methods for fractional PIDs. In: Proc. of 4th IFAC Workshop on Fractional Differentiation and its Applications, FDA. Badajoz, Spain, 10 (2010), 1–5.

    Google Scholar 

  29. B. Vinagre, I. Podlubny, A. Hernandez, V. Feliu, Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3 No 3 (2000), 231–248.

    MathSciNet  MATH  Google Scholar 

  30. D. Xue, Fractional-order Control Systems Fundamentals and Numerical Implementations. De Gruyter (2017).

    Book  Google Scholar 

  31. J. M. P. Zerpa, A. Canelas, B. Sensale, D. B. Santana, R. L. Armentano, Modeling the arterial wall mechanics using a novel high-order viscoelastic fractional element. Appl. Math. Model. 39 No 16 (2015), 4767–4780.

    Article  MathSciNet  Google Scholar 

  32. S. Zhang, L. Liu, X. Cui, Robust FOPID controller design for fractional-order delay systems using positive stability region analysis. Int. J. Robust. Nonlin. 29 No 15 (2019), 5195–5212.

    Article  MathSciNet  Google Scholar 

  33. S. Zhang, Y. Yu, H. Wang, Mittag-Leffler stability of fractional-order Hopfield neural networks. Nonlinear Anal-Hybri. 16 (2015), 104–121.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Zhang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Liu, L., Xue, D. et al. Stability and Resonance Analysis of a General Non-Commensurate Elementary Fractional-Order System. Fract Calc Appl Anal 23, 183–210 (2020). https://doi.org/10.1515/fca-2020-0007

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0007

MSC 2010

Key Words and Phrases

Navigation