Skip to main content
Log in

A Note on Models for Anomalous Phase-Change Processes

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We review some fractional free boundary problems that were recently considered for modeling anomalous phase-transitions. All problems are of Stefan type and involve fractional derivatives in time according to Caputo’s definition. We survey the assumptions from which they are obtained and observe that the problems are nonequivalent though all of them reduce to a classical Stefan problem when the order of the fractional derivatives is replaced by one. We further show that a simple heuristic approach built upon a fractional version of the energy balance and the classical Fourier’s law leads to a natural generalization of the classical Stefan problem in which time derivatives are replaced by fractional ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Alexiades, A. D. Solomon, Mathematical Modeling of Melting and Freezing Processes.. Hemisphere Publishing Corporation Washington 1993.

    Google Scholar 

  2. C. Atkinson, Moving boundary problems for time fractional and composition dependent diffusion. Fract. Calc. Appl. Anal.. 15, No 2 (2012). 207–221. 10.2478/s13540-012-0015-2; https://www.degruyter.com/view/j/fca.2012.15.issue-2/issue-files/fca.2012.15.issue-2.xml

    MathSciNet  MATH  Google Scholar 

  3. M. Blasik, M. Klimek, Numerical solution for the one phase 1D fractional Stefan problem using front fixing method. Math. Methods in Appl. Sci.. 38 (2015). 3214–3228.

    MathSciNet  MATH  Google Scholar 

  4. A. N. Ceretani, D. A. Tarzia, Determination of two unknown thermal coefficients through and inverse one-phase fractional Stefan problems. Fract. Calc. Appl. Anal.. 20, No 2 (2017). 399–421. 10.1515/fca-2017-0021; https://www.degruyter.com/view/j/fca.2017.20.issue-2/issue-files/fca.2017.20.issue-2.xml

    MathSciNet  MATH  Google Scholar 

  5. A. Compte, R. Metzler, The generalized Cattaneo equation for the description of anomalous transport processes. J. Physics A: Math. and General. 30 (1997). 7277–7289.

    MathSciNet  MATH  Google Scholar 

  6. S. Das, R. Kumar, P. Kumar Gupta, Analytical approximate solution of space-time fractiona diffusion equation with a moving boundary condition. Zeitschrift für Naturforschung. 66a (2011). 281–288.

    Google Scholar 

  7. S. Das, Rajeev, Solution of fractional diffusion equation with a moving boundary condition by variational iteration method and Adomian decomposition method. Zeitschrift für Naturforschung. 65a (2010). 793–799.

    Google Scholar 

  8. M. S. Espedal, A. Fasano, A. Mikelić, Filtration in Porous Media and Industrial Application: Lectures Given at the 4th Session of the Centro Internazionale Matematico Estivo.. Springer 2000

    Google Scholar 

  9. N. Filipovitch, K. M. Hill, A. Longjas, V. R. Voller, Infiltration experiments demonstrate an explicit connection between heterogeneity and anomalous diffusion behavior. Water Resources Research. 52, No 7 (2016). 5167–5178.

    Google Scholar 

  10. R. Gianni, P. Mannucci, A free boundary problem in an absorbing porous material with saturation dependent permeability. Nonlin. Diff. Equations and Appl.. 8 (2001). 219–235.

    MathSciNet  MATH  Google Scholar 

  11. M. E. Gurtin, A. C. Pipkin, A general theory of heat conduction with finite wave speeds. Archive for Rational Mech. and Anal.. 31 (1968). 113–126.

    MathSciNet  MATH  Google Scholar 

  12. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations.. Elsevier Amsterdam 2006

    MATH  Google Scholar 

  13. A. Kubica, P. Ribka, K. Ryszewska, Weak solutions of fractional differential equations in non cylindrical domains. Nonl. Anal.: Real World Appl.. 36 (2017). 154–182.

    MathSciNet  MATH  Google Scholar 

  14. M. Küntz, P. Lavallée, Experimental evidence and theoretical analysis of anomalous diffusion during water infiltration in porous building materials. J. Phys. D: Appl. Phys.. 34 (2001). 2547–2554.

    Google Scholar 

  15. X. Li, X. Sun, Similarity solutions for phase-change problems with fractional governing equations. Appl. Math. Letters. 45 (2015). 7–11.

    MathSciNet  MATH  Google Scholar 

  16. X. Li, S. Wang, M. Zhao, Two methods to solve a fractional single phase moving boundary problem. Centr. European J. of Phys.. 11, No 10 (2013). 1387–1391.

    Google Scholar 

  17. X. Liu, M. Xu, An exact solution to the moving boundary problem with fractional anomalous diffusion in drug release devises. ZAMM - J. of Appl. Math. and Mech.. 84, No 1 (2004). 22–28.

    MATH  Google Scholar 

  18. X. Liu, M. Xu, Some exact solutions to Stefan problems with fractional differential equations. J. Math. Anal. Appl.. 351 (2009). 536–542.

    MathSciNet  MATH  Google Scholar 

  19. X. Li, M. Xu, X. Jiang, Homotophy perturbation method to time-fractional diffusion equation with a moving boundary condition. Appl. Math. and Computations. 208 (2009). 434–439.

    MATH  Google Scholar 

  20. X. Li, M. Xu, S. Wang, Analytical solution to the moving boundary problems with space-time-fractional derivatives in drug release devises. J. Phys. A: Math. and Theoret.. 40 (2007). 12131–12141.

    MATH  Google Scholar 

  21. X. Li, M. Xu, S. Wang, Scale-invariant solutions to partial differential equations of fractional order with a moving boundary condition. J. Phys. A: Math. and Theoret.. 41 (2008). Art. 155202

    MathSciNet  MATH  Google Scholar 

  22. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Reports. 339 (2000). 1–77.

    MathSciNet  MATH  Google Scholar 

  23. I. Podlubny, Fractional Differential Equations.. Academic Press San Diego 1971

    MATH  Google Scholar 

  24. Rajeev M.S. Kushwaha, Homotopy perturbation method for a limit case problem governed by fractional diffusion equation. Appl. Math. Modelling. 37 (2013). 3589–3599.

    MathSciNet  MATH  Google Scholar 

  25. M. Rajeev, Kushwaha Singh, A. Kumar, An approximate solution to a moving boundary problem with space-time fractional derivative in fluvio-deltaic sedimentation process. Ain Shams Engin. J.. 4 (2013). 889–895.

    Google Scholar 

  26. S. Roscani, Hopf lemma for the fractional diffusion operator and its application to a fractional free-boundary problem. J. Math. Anal. Appl.. 434 (2016). 125–135.

    MathSciNet  MATH  Google Scholar 

  27. S. Roscani, Moving-boundary problems for the time-fractional diffusion equation. Electr. J. of Diff. Equations. 2017, No 44 (2017). 1–12.

    MathSciNet  MATH  Google Scholar 

  28. S. Roscani, J. Bollati, D.A. Tarzia, A new mathematical formulation for a phase change problem with a memory flux. Chaos, Solitons and Fractals. 116 (2018). 340–347.

    MathSciNet  MATH  Google Scholar 

  29. S. Roscani, E. Santillan Marcus, Two equivalent Stefan’s problems for the time-fractional-diffusion equation. Fract. Calc. Appl. Anal.. 16, No 4 (2013). 802–815. 10.2478/s13540-013-0050-7; https://www.degruyter.com/view/j/fca.2013.16.issue-4/issue-files/fca.2013.16.issue-4.xml

    MathSciNet  MATH  Google Scholar 

  30. S. Roscani, E. Santillan Marcus, A new equivalence of Stefan’s problems for the time-fractional-diffusion equation. Fract. Calc. Appl. Anal.. 17, No 2 (2014). 371–381. 10.2478/s13540-014-0175-3; https://www.degruyter.com/view/j/fca.2014.17.issue-2/issue-files/fca.2014.17.issue-2.xml

    MathSciNet  MATH  Google Scholar 

  31. S. Roscani, D. A. Tarzia, A generalized Neumann solution for the two-phase fractional Lamé-Clapeyron-Stefan problem. Advances in Math. Sci. and Appl.. 24, No 2 (2014). 237–249.

    MathSciNet  MATH  Google Scholar 

  32. S. Roscani, D. A. Tarzia, Explicit solution for a two-phase fractional Stefan problem with a heat flux condition at the fixed face. Comput. and Appl. Math.. 37, No 5 (2018). 4757–4771.

    MathSciNet  MATH  Google Scholar 

  33. J. Singh, P. K. Gupta, K. N. Rai, Variational iteration method to solve moving boundary problem with temperature dependent physical properties. Thermal Sci.. 15, No Suppl. 2 (2011). S229–S239.

    Google Scholar 

  34. A. D. Solomon, D. G. Wilson, V. Alexiades, A mushy zone model with an exact solution. Letters in Heat and Mass Transfer. 9 (1982). 319–324.

    Google Scholar 

  35. D. A. Tarzia, Neumann-like solution for the two-phase Stefan problem with a simple mushy zone model. Comput. and Appl. Math.. 9, No 3 (1990). 201–211.

    MathSciNet  MATH  Google Scholar 

  36. D. A. Tarzia, Determination of one unknown thermal coefficient through the one-phase fractional Lamé-Clapeyron-Stefan problem. Appl. Mathematics. 6 (2015). 2128–2191.

    Google Scholar 

  37. J. L. Vázquez, The mathematical theories of diffusion: Nonlinear and fractional diffusion, Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions. Springer Intern. Publ. (2017). 205–278.

    Google Scholar 

  38. C. Vogl, M. Miksis, S. Davis, Moving boundary problems governed by anomalous diffusion. Proc. Royal Soc. A. 468 (2016). 3348–3369.

    MathSciNet  MATH  Google Scholar 

  39. V. R. Voller, An exact solution of a limit case Stefan problem governed by a fractional diffusion equation. Intern. J. of Heat and Mass Transfer. 53 (2010). 5622–5625.

    MATH  Google Scholar 

  40. V. R. Voller, Fractional Stefan problems. Intern. J. of Heat and Mass Transfer. 74 (2014). 269–277.

    Google Scholar 

  41. V. R. Voller, A direct simulation demonstrating the role of spacial heterogeneity in determining anomalous diffusive transport. Water Resources Research. 51, No 4 (2015). 2119–2127.

    Google Scholar 

  42. V. R. Voller, Computations of anomalous phase change. Intern. J. of Numerical Methods for Heat & Fluid Flow. 26, No 3/4 (2016). 624–638.

    MathSciNet  MATH  Google Scholar 

  43. V. R. Voller, F. Falcini, R. Garra, Fractional Stefan problems exhibiting lumped and distributional latent-heat memory effects. Phys. Review E. 87 (2013). Art. 042401

    Google Scholar 

  44. S. W. Wheatcraft, M. M. Meerschaert, Fractional conservation of mass. Advances in Water Resources. 31 (2008). 1377–1381.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea N. Ceretani.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceretani, A.N. A Note on Models for Anomalous Phase-Change Processes. Fract Calc Appl Anal 23, 167–182 (2020). https://doi.org/10.1515/fca-2020-0006

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0006

MSC 2010

Key Words and Phrases

Navigation