Skip to main content
Log in

Crossover Dynamics from Superdiffusion to Subdiffusion: Models and Solutions

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The Cattaneo or telegrapher’s equation describes the crossover from initial ballistic to normal diffusion. Here we study and survey time-fractional generalisations of this equation that are shown to produce the crossover of the mean squared displacement from superdiffusion to subdiffusion. Conditional solutions are derived in terms of Fox H-functions and the δth-order moments as well as the diffusive flux of the different models are derived. Moreover, the concept of the distribution-like is proposed as an alternative to the probability density function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.M. Atanackovic, S. Pilipovic, On a constitutive equation of heat conduction with fractional derivatives of complex order. Acta Mechanica. 229, No 3 (2018). 1111–1121.

    MathSciNet  MATH  Google Scholar 

  2. E. Awad, On the time-fractional Cattaneo equation of distributed order. Physica A. 518 (2019). 210–233.

    MathSciNet  Google Scholar 

  3. E. Awad, On the generalized thermal lagging behavior: Refined aspects. J. Thermal Stresses. 35, No 4 (2012). 293–325.

    Google Scholar 

  4. E. Barkai, Y. Garini, R. Metzler, Strange kinetics of single molecules in living cells. Phys. Today. 65, No 8 (2012). 29–35.

    Google Scholar 

  5. E. Bazhlekova, Subordination in a class of generalized time-fractional diffusion-wave equations. Fract. Calc. Appl. Anal.. 21, No 4 (2018). 869–900. 10.1515/fca-2018-0048; https://www.degruyter.com/view/j/fca.2018.21.issue-4/issue-files/fca.2018.21.issue-4.xml

    MathSciNet  MATH  Google Scholar 

  6. J.-P. Bouchaud, A. Georges, Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep.. 195, No 4-5 (1990). 127–293.

    MathSciNet  Google Scholar 

  7. J.-P. Bouchaud, A. Comtet, A. Georges, P. Le Doussal, Classical diffusion of a particle in a one-dimensional random force field. Ann. Phys. (N.Y.). 201, No 2 (1990). 285–341.

    MathSciNet  Google Scholar 

  8. L. Boyadjiev, Y. Luchko, The neutral-fractional telegraph equation. Math. Modelling Nat. Phenomena. 12, No 6 (2017). 51–67.

    MathSciNet  MATH  Google Scholar 

  9. M. Caputo, Distributed order differential equations modelling dielectric induction and diffusion. Fract. Calc. Appl. Anal.. 4, No 4 (2001). 421–442.

    MathSciNet  MATH  Google Scholar 

  10. C. Cattaneo, Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena. 3, No 3 (1948). 83–101.

    MathSciNet  MATH  Google Scholar 

  11. A. Chechkin, R. Gorenflo, I. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E. 66, No 4 (2002). Art. 046129

    Google Scholar 

  12. A.V. Chechkin, J. Klafter, I.M. Sokolov, Fractional Fokker-Planck equation for ultraslow kinetics. Europhys. Lett.. 63, No 3 (2003). 326–332.

    Google Scholar 

  13. A. Chechkin, V.Y. Gonchar, R. Gorenflo, N. Korabel, I. Sokolov, Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights. Phys. Rev. E. 78, No 2 (2008). Art. 021111

    MathSciNet  Google Scholar 

  14. A.V. Chechkin, R. Gorenflo, I.M. Sokolov, V.Y. Gonchar, Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal.. 6, No 3 (2003). 259–280.

    MathSciNet  MATH  Google Scholar 

  15. A. Chechkin, I.M. Sokolov, J. Klafter, Natural and modified forms of distributed-order fractional diffusion equations, Fractional Dynamics: Recent Advances. Ed. by J. Klafter, S.C. Lim, R. Metzler, World Scientific Singapore (2011). 107–127.

    MATH  Google Scholar 

  16. A. Compte, R. Metzler, The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A. 30, No 22 (1997). 7277–7289.

    MathSciNet  MATH  Google Scholar 

  17. A. Dhar, Fractional equation description of an open anomalous heat conduction set-up. J. Stat. Mech.. 2019, No 1 (2019). Art. 013205

    MathSciNet  MATH  Google Scholar 

  18. A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. (Leipzig). 322, No 8 (1905). 549–560.

    MATH  Google Scholar 

  19. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Tables of Integral Transforms. 1 McGraw-Hill New York (1954).

  20. W.G. Glöckle, T.F. Nonnenmacher, Fox function representation of non-Debye relaxation processes. J. Stat. Phys.. 71, No 3-4 (1993). 741–757.

    MathSciNet  MATH  Google Scholar 

  21. A. Godec, A. V. Chechkin, E. Barkai, H. Kantz, R. Metzler, Localization and universal fluctuations in ultraslow diffusion processes. J. Phys. A. 47, No 49 (2014). Art. 492002

    MathSciNet  MATH  Google Scholar 

  22. R. Garra, R. Gorenflo, F. Polito, Ž. Tomovski, Hilfer–Prabhakar derivatives and some applications. Appl. Math. Comput.. 242 (2014). 576–589.

    MathSciNet  MATH  Google Scholar 

  23. R. Gorenflo, Y. Luchko, M. Stojanović, Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal.. 16, No 2 (2013). 297–316. 10.2478/s13540-013-0019-6; https://www.degruyter.com/view/j/fca.2013.16.issue-2/issue-files/fca.2013.16.issue-2.xml

    MathSciNet  MATH  Google Scholar 

  24. R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications.. Springer Berlin (2014).

    MATH  Google Scholar 

  25. R.A. Guyer, J.A. Krumhansl, Solution of the linearized phonon Boltzmann equation. Phys. Rev.. 148, No 2 (1966). 766–778.

    Google Scholar 

  26. S. Havlin, G. H. Weiss, A new class of long-tailed pausing time densities. J. Stat. Phys.. 58, No 5-6 (1990). 1267–1273.

    Google Scholar 

  27. R. Hilfer, Mathematical and physical interpretations of fractional derivatives and integrals, Handbook of Fractional Calculus with Applications. 1 Basic Theory, Ed. by A. Kochubei, Y. Luchko Berlin De Gruyter (2019).

  28. R. Hilfer, Fractional diffusion based on Riemann-Liouville fractional derivatives. J. Phys. Chem. B. 104, No 16 (2000). 3914–3917.

    Google Scholar 

  29. F. Höfling, T. Franosch, Anomalous transport in the crowded world of biological cells. Rep. Prog. Phys.. 76, No 4 (2013). Art. 046602

    MathSciNet  Google Scholar 

  30. P. De Jagher, A hyperbolic “diffusion equation” taking a finite collision frequency into account. Physica A. 101, No 2-3 (1980). 629–633.

    Google Scholar 

  31. J.-H. Jeon, H.M.-S. Monne, M. Javanainen, R. Metzler, Anomalous diffusion of phospholipids and cholesterols in a lipid bilayer and its origins. Phys. Rev. Lett.. 109, No 18 (2012). Art. 188103

    Google Scholar 

  32. J.-H. Jeon, M. Javanainen, H. Martinez-Seara, R. Metzler, I. Vattulainen, Protein crowding in lipid bilayers gives rise to non-Gaussian anomalous lateral diffusion of phospholipids and proteins. Phys. Rev. X. 6, No 2 (2016). Art. 021006

    Google Scholar 

  33. D. Jou, G. Lebon, J. Casas-Vázquez, Extended Irreversible Thermodynamics.. Springer Berlin (2014).

    MATH  Google Scholar 

  34. N.G. van Kampen, Stochastic Processes in Physics and Chemistry.. North Holland Amsterdam (1981).

    MATH  Google Scholar 

  35. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations.. Elsevier Amsterdam (2006).

    MATH  Google Scholar 

  36. T. Langlands, Solution of a modified fractional diffusion equation. Physica A. 367 (2006). 136–144.

    MathSciNet  Google Scholar 

  37. P. Langevin, Sur la théorie du mouvement brownien. C. R. Acad. Sci. Paris. 146, No 10 (1908). 530–533.

    MATH  Google Scholar 

  38. Y.B. Lev, D.M. Kennes, C. Klöckner, D.R. Reichman, C. Karrasch, Transport in quasiperiodic interacting systems: From superdiffusion to subdiffusion. Europhys. Lett.. 119, No 3 (2017). Art. 37003

    Google Scholar 

  39. Y. Luchko, Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl.. 374, No 2 (2011). 538–548.

    MathSciNet  MATH  Google Scholar 

  40. F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons & Fractals. 7, No 9 (1996). 1461–1477.

    MathSciNet  MATH  Google Scholar 

  41. F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett.. 9, No 6 (1996). 23–28.

    MathSciNet  MATH  Google Scholar 

  42. R. Gorenflo, F. Mainardi, Fractional calculus, Fractals and Fractional Calculus in Continuum Mechanics. Springer Berlin (1997). 223–276.

    MATH  Google Scholar 

  43. F. Mainardi, G. Pagnini, R. Gorenflo, Some aspects of fractional diffusion equations of single and distributed order. Applied Mathematics and Computation. 187, No 1 (2007). 295–305.

    MathSciNet  MATH  Google Scholar 

  44. R.N. Mantegna, H.E. Stanley, Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight. Phys. Rev. Lett.. 73, No 22 (1994). 2946–2949.

    MathSciNet  MATH  Google Scholar 

  45. J. Masoliver, Fractional telegrapher’s equation from fractional persistent random walks. Phys. Rev. E. 93, No 5 (2016). Art. 052107

    MathSciNet  Google Scholar 

  46. J. Masoliver, G.H. Weiss, Finite-velocity diffusion. Euro. J. Phys.. 17, No 4 (1996). 190–196.

    Google Scholar 

  47. Y. Meroz, I.M. Sokolov, A toolbox for determining subdiffusive mechanisms. Phys. Rep.. 573 (2015). 1–29.

    MathSciNet  Google Scholar 

  48. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep.. 339, No 1 (2000). 1–77.

    MathSciNet  MATH  Google Scholar 

  49. R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A. 37, No 31 (2004). R161–R208.

    MathSciNet  MATH  Google Scholar 

  50. R. Metzler, J. Klafter, I.M. Sokolov, Anomalous transport in external fields: Continuous time random walks and fractional diffusion equations extended. Phys. Rev. E. 58, No 2 (1998). 1621–1633.

    Google Scholar 

  51. R. Metzler, Generalized Chapman-Kolmogorov equation: A unifying approach to the description of anomalous transport in external fields. Phys. Rev. E. 62, No 5 (2000). 6233–6245.

    MathSciNet  Google Scholar 

  52. R. Metzler, E. Barkai, J. Klafter, Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach. Phys. Rev. Lett.. 82, No 18 (1999). 3563–3567.

    Google Scholar 

  53. R. Metzler, E. Barkai, J. Klafter, Deriving fractional Fokker-Planck equations from a generalised master equation. Europhys. Lett.. 46, No 4 (1999). 431–436.

    MathSciNet  Google Scholar 

  54. R. Metzler, J.-H. Jeon, A. G. Cherstvy, Non-Brownian diffusion in lipid membranes: experiments and simulations. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1858, No 10 (2016). 2451–2467.

    Google Scholar 

  55. R. Metzler, J.-H. Jeon, A.G. Cherstvy, E. Barkai, Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys.. 16 (2014). 24128–24164.

    Google Scholar 

  56. R. Metzler, T.F. Nonnenmacher, Space- and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivation. Chem. Phys.. 284, No 1-2 (2002). 67–90.

    Google Scholar 

  57. D. Molina-Garcia, T. Sandev, H. Safdari, G. Pagnini, A. Chechkin, R. Metzler, Crossover from anomalous to normal diffusion: truncated power-law noise correlations and applications to dynamics in lipid bilayers. New J. Phys.. 20 (2018). Art. 103027

    Google Scholar 

  58. P.M. Morse, H. Feshbach, Methods of Theoretical Physics.. McGraw-Hill New York (1953).

    MATH  Google Scholar 

  59. F. Mainardi, A. Mura, G. Pagnini, R. Gorenflo, Time-fractional diffusion of distributed order. J. Vibration and Control. 14, No 9-10 (2008). 1267–1290.

    MathSciNet  MATH  Google Scholar 

  60. A.M. Mathai, R.K. Saxena, H.J. Haubold, The H-Function: Theory and Applications.. Springer Berlin (2010).

    MATH  Google Scholar 

  61. R.R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Status Solidi. 133, No 1 (1986). 425–430.

    Google Scholar 

  62. T. Nonnenmacher, D. Nonnenmacher, Towards the formulation of a nonlinear fractional extended irreversible thermodynamics. Acta Phys. Hungarica. 66, No 1-4 (1989). 145–154.

    MathSciNet  Google Scholar 

  63. K. Nørregaard, R. Metzler, C. Ritter, K. Berg-Sørensen, L.B. Oddershede, Manipulation and motion of organelles and single molecules in living cells. Chem. Rev.. 117, No 5 (2017). 4342–4375.

    Google Scholar 

  64. A.V. Oppenheim, Signals and Systems. MIT OpenCourseWare Cambridge MA (2011); https://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011

    Google Scholar 

  65. E. Orsingher, L. Beghin, Time-fractional telegraph equations and telegraph processes with Brownian time. Probability Theory and Related Fields. 128, No 1 (2004). 141–160.

    MathSciNet  MATH  Google Scholar 

  66. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications.. Elsevier Amsterdam (1998).

    MATH  Google Scholar 

  67. T.R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel. Yokohama Math. J.. 19, No 1 (1971). 7–15.

    MathSciNet  MATH  Google Scholar 

  68. L.F. Richardson, Atmospheric diffusion shown on a distance-neighbour graph. Proc. Roy. Soc. A. 110, No 756 (1926). 709–737.

    Google Scholar 

  69. H. Qi, X. Jiang, Solutions of the space-time fractional Cattaneo diffusion equation. Physica A. 390, No 11 (2011). 1876–1883.

    MathSciNet  MATH  Google Scholar 

  70. T.Q. Qiu, C.L. Tien, Short-pulse laser heating on metals. Intl. J. Heat and Mass Transfer. 35, No 3 (1992). 719–726.

    Google Scholar 

  71. T.Q. Qiu, C.L. Tien, Heat transfer mechanisms during short-pulse laser heating of metals. ASME J. Heat Transfer. 115, No 4 (1993). 835–841.

    Google Scholar 

  72. T. Sandev, A.V. Chechkin, N. Korabel, H. Kantz, I.M. Sokolov, R. Metzler, Distributed-order diffusion equations and multifractality: Models and solutions. Phys. Rev. E. 92, No 4 (2015). Art. 042117

    MathSciNet  Google Scholar 

  73. T. Sandev, A. Chechkin, H. Kantz, R. Metzler, Diffusion and Fokker-Planck-Smoluchowski equations with generalized memory kernel. Fract. Calc. Appl. Anal.. 18, No 4 (2015). 1006–1038. 10.1515/fca-2015-0059; https://www.degruyter.com/view/j/fca.2015.18.issue-4/issue-files/fca.2015.18.issue-4.xml

    MathSciNet  MATH  Google Scholar 

  74. T. Sandev, I.M. Sokolov, R. Metzler, A. Chechkin, Beyond monofractional kinetics. Chaos, Solitons & Fractals. 102 (2017). 210–217.

    MathSciNet  MATH  Google Scholar 

  75. T. Sandev, Z. Tomovski, J.L. Dubbeldam, A. Chechkin, Generalized diffusion-wave equation with memory kernel. J. Phys. A. 52, No 1 (2019). Art. 015201

    MathSciNet  MATH  Google Scholar 

  76. C. Sándor, A. Libál, C. Reichhardt, C. Olson Reichhardt, Dewetting and spreading transitions for active matter on random pinning substrates. J. Chem. Phys.. 146, No 20 (2017). Art. 204903

    Google Scholar 

  77. R.K. Saxena, G. Pagnini, Exact solutions of triple-order time-fractional differential equations for anomalous relaxation and diffusion I: The accelerating case. Physica A. 390, No 4 (2011). 602–613.

    MathSciNet  Google Scholar 

  78. R.L. Schilling, R. Song, Z. Vondracek, Bernstein Functions: Theory and Applications.. De Gruyter Berlin (2012).

    MATH  Google Scholar 

  79. W. Schneider, W. Wyss, Fractional diffusion and wave equations. J. Math. Phys.. 30, No 1 (1989). 134–144.

    MathSciNet  MATH  Google Scholar 

  80. Y.G. Sinai, The limiting behavior of a one-dimensional random walk in a random medium. Theory of Probability & Applications. 27, No 2 (1982). 256–268.

    Google Scholar 

  81. M. von Smoluchowski, Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann. Phys. (Leipzig). 326, No 14 (1906). 756–780.

    MATH  Google Scholar 

  82. I. Sokolov, A. Chechkin, J. Klafter, Distributed-order fractional kinetics. Acta Phys. Polonica B. 35, No 47 (2004). 1323–1341.

    Google Scholar 

  83. I. Sokolov, Thermodynamics and fractional Fokker-Planck equations. Phys. Rev. E. 63, No 5 (2001). Art. 056111

    Google Scholar 

  84. P. Tan, Y. Liang, Q. Xu, E. Mamontov, J. Li, X. Xing, L. Hong, Gradual crossover from subdiffusion to normal diffusion: a many-body effect in protein surface water. Phys. Rev. Lett.. 120, No 24 (2018). Art. 248101

    Google Scholar 

  85. A.M. Tawfik, H. Fichtner, R. Schlickeiser, A. Elhanbaly, Analytical solutions of the space-time fractional telegraph and advection-diffusion equations. Physica A. 491 (2018). 810–819.

    MathSciNet  Google Scholar 

  86. D.Y. Tzou, Macro-to Microscale Heat Transfer: The Lagging Behavior.. John Wiley & Sons New York (2014).

    Google Scholar 

  87. G.H. Weiss, Some applications of persistent random walks and the telegrapher’s equation. Physica A. 311, No 3-4 (2002). 381–410.

    MathSciNet  MATH  Google Scholar 

  88. W. Wyss, The fractional diffusion equation. J. Math. Phys.. 27, No 11 (1986). 2782–2785.

    MathSciNet  MATH  Google Scholar 

  89. M.A. Zaks, A. Nepomnyashchy, Subdiffusive and superdiffusive transport in plane steady viscous flows. Proc. Natl. Acad. Sci. USA. 116, No 37 (2018). 18245–18250.

    MathSciNet  MATH  Google Scholar 

  90. G.M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics.. Oxford University Press Oxford (2008).

    MATH  Google Scholar 

  91. V. Želi, D. Zorica, Analytical and numerical treatment of the heat conduction equation obtained via time-fractional distributed-order heat conduction law. Physica A. 492 (2018). 2316–2335.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad Awad.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awad, E., Metzler, R. Crossover Dynamics from Superdiffusion to Subdiffusion: Models and Solutions. Fract Calc Appl Anal 23, 55–102 (2020). https://doi.org/10.1515/fca-2020-0003

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0003

MSC 2010

Key Words and Phrases

Navigation