Skip to main content
Log in

Exact Asymptotic Formulas for the Heat Kernels of Space and Time-Fractional Equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This paper aims to study the asymptotic behaviour of the fundamental solutions (heat kernels) of non-local (partial and pseudo differential) equations with fractional operators in time and space. In particular, we obtain exact asymptotic formulas for the heat kernels of time-changed Brownian motions and Cauchy processes. As an application, we obtain exact asymptotic formulas for the fundamental solutions to the n-dimensional fractional heat equations in both time and space

$$\begin{array}{*{20}{c}} {\frac{{{\partial ^\beta }}}{{\partial {t^\beta }}}u\left( {t,x} \right) = - {{\left( { - {\Delta _x}} \right)}^\gamma }u\left( {t,x} \right),} {\beta,\gamma \in \left( {0,1} \right)} \\ \end{array}.$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Baeumer, M.M. Meerschaert, Stochastic solutions for fractional Cauchy problems. Fract. Calc. Appl. Anal. 4 (2001), 481–500

    MathSciNet  MATH  Google Scholar 

  2. A. Bendikov, Asymptotic formulas for symmetric stable semigroups. Expo. Math. 12 (1994), 381–384

    MathSciNet  MATH  Google Scholar 

  3. A. Bendikov, Heat kernels for isotropic-like Markov generators on ultrametric spaces: A survey. p-adic Numbers, Ultrametic Analysis and Applications 10 (2018), 1–11; DOI: 10.1134/S2070046618010016.

    Article  MathSciNet  MATH  Google Scholar 

  4. R.M. Blumenthal, R.K. Getoor, Some theorems on stable processes. Trans. Amer. Math. Soc. 95 (1960), 263–273; DOI: 10.1090/S0002-9947-1960-0119247-6.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Bochner, Diffusion equation and stochastic processes. Proc. Natl. Acad. Sci. U.S.A. 35 (1949), 368–370; DOI: 10.1073/pnas.35.7.368.

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Butko, Chernoff approximation for semigroups generated by killed Feller processes and Feynman formulae for time-fractional Fokker—Planck—Kolmogorov equations. Fract. Calc. Appl. Anal. 21, No 5 (2018), 1203–1237; DOI: 10.1515/fca-2018-0065; https://www.degruyter.com/view/j/fca.2018.21.issue-5/issue-files/fca.2018.21.issue-5.xml.

    Article  MathSciNet  MATH  Google Scholar 

  7. Z.-Q. Chen, P. Kim, T. Kumagai, J. Wang, Heat kernel estimates for time fractional equations. Forum Math. 30 (2018), 1163–1192; DOI: 10.1515/forum-2017-0192.

    Article  MathSciNet  MATH  Google Scholar 

  8. C.-S. Deng, R.L. Schilling, On shift Harnack inequalities for subordinate semigroups and moment estimates for Lévy processes. Stoch. Proc. Appl. 125 (2015), 3851–3878; DOI: 10.1016/j.spa.2015.05.013.

    Article  MATH  Google Scholar 

  9. J. Dubbeldam, Z. Tomovski, T. Sandev, Space-time fractional Schrödinger equation with composite time fractional derivative. Fract. Calc. Appl. Anal. 18, No 5 (2015), 1179–1200; DOI: 10.1515/fca-2015-0068; https://www.degruyter.com/view/j/fca.2015.18.issue-5/issue-files/fca.2015.18.issue-5.xml.

    Article  MathSciNet  MATH  Google Scholar 

  10. N.G. de Bruijn, Asymptotic Methods in Analysis. North–Holland, Amsterdam, 1958.

    MATH  Google Scholar 

  11. R. Gorenflo, Y. Luchko, M. Yamamoto, Time-fractional diffusion equation in the fractional Sobolev spaces. Fract. Calc. Appl. Anal. 18, No 3 (2015), 799–820; DOI: 10.1515/fca-2015-0048; https://www.degruyter.com/view/j/fca.2015.18.issue-3/issue-files/fca.2015.18.issue-3.xml.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Grigor’yan, T. Kumagai, On the dichotomy in the heat kernel two sided estimates. Proc. Sympos. Pure Math. 77 (2008), 199–210; DOI: 10.1090/pspum/077.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Hahn, S. Umarov, Fractional Fokker–Planck–Kolmogorov type equations and their associated stochastic differential equations. Fract. Calc. Appl. Anal. 14, No 1 (2011), 56–79; DOI: 10.2478/s13540-011-0005-9; https://www.degruyter.com/view/j/fca.2011.14.issue-1/issue-files/fca.2011.14.issue-1.xml.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Hu, N. Jacob, C. Yuan, Existence and uniqueness for a class of stochastic time fractional space pseudo-differential equations. Fract. Calc. Appl. Anal. 19 (2016), 56–68; DOI: 10.1515/fca-2016-0004; https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml.

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Jacob, Pseudo Differential Operators and Markov Processes, Vol. 1–3. Imperial College Press, London (2001–2005).

  16. N. Jacob, V. Knopova, S. Landwehr, R.L. Schilling, A geometric interpretation of the transition density of a symmetric Lévy process. Sci. China Math. 55 (2012), 1099–1126; DOI: 10.1007/s11425-012-4368-0.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Kern, S. Lage, M. Meerschaert, Semi-fractional diffusion equations. Fract. Calc. Appl. Anal. 22 (2019), 326–357; DOI: 10.1515/fca-2019-0021; https://www.degruyter.com/view/j/fca.2019.22.issue-2/issue-files/fca.2019.22.issue-2.xml.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Kwaśnicki, Ten equivalent definitions of the fractional Laplacian. Fract. Calc. Appl. Anal. 20, No 1 (2017), 7–51; DOI: 10.1515/fca-2017-0002; https://www.degruyter.com/view/j/fca.2017.20.issue-1/issue-files/fca.2017.20.issue-1.xml.

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 15 (2012), 141–160; DOI: /10.2478/s13540-012-0010-7; https://www.degruyter.com/view/j/fca.2017.20.issue-1/issue-files/fca.2017.20.issue-1.xml.

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Luchko, M. Yamamoto, General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems. Fract. Calc. Appl. Anal. 19, No 3 (2016), 676–695; DOI: 10.1515/fca-2016-0036; https://www.degruyter.com/view/j/fca.2016.19.issue-3/issue-files/fca.2016.19.issue-3.xml.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Magdziarz, Path properties of subdiffusion–a martingale approach. Stoch. Models 26 (2010), 256–271; DOI: 10.1080/15326341003756379.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Magdziarz, R.L. Schilling, Asymptotic properties of Brownian motion delayed by inverse subordinators. Proc. Amer. Math. Soc. 143 (2015), 4485–4501; DOI: 10.1090/proc/12588.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Magdziarz, A. Weron, K. Weron, Fractional Fokker–Planck dynamics: Stochastic representation and computer simulation. Phys. Rev. E 75, (2007), Art. # 016708; DOI: 10.1103/PhysRevE.75.016708.

  24. M.M. Meerschaert, E. Nane, Y. Xiao, Large deviations for local time fractional Brownian motion and applications. J. Math. Anal. Appl. 346 (2008), 432–445; DOI: 10.1016/j.jmaa.2008.05.087.

    Article  MathSciNet  MATH  Google Scholar 

  25. M.M. Meerschaert, H.P. Scheffler, Limit theorems for continuous time random walks with infinite mean waiting times. J. Appl. Probab. 41 (2004), 623–638; DOI: 10.1239/jap/1091543414.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1–77; DOI: 10.1016/S0370-1573(00)00070-3.

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Pagnini, F. Paradisi, A stochastic solution with Gaussian stationary increments of the symmetric space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 19, No 2 (2016), 408–440; DOI: 10.1515/fca-2016-0022; https://www.degruyter.com/view/j/fca.2016.19.issue-3/issue-files/fca.2016.19.issue-3.xml.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Piryatinska, A.I. Saichev, W.A. Woyczynski, Models of anomalous diffusion: The subdiffusive case. Phys. A 349 (2005), 375–420; DOI: 10.1016/j.physa.2004.11.003.

    Article  Google Scholar 

  29. G. Pólya, On the zeros of an integral function represented by Fourier’s integral. Messenger Math. 52 (1923), 185–188

    MATH  Google Scholar 

  30. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Gordon and Breach, Amsterdam, 1993.

    MATH  Google Scholar 

  31. K. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge, 1999.

    MATH  Google Scholar 

  32. R.L. Schilling, R. Song, Z. Vondraček, Bernstein Functions. Theory and Applications, 2nd Ed. De Gruyter, Berlin, 2012.

    Book  MATH  Google Scholar 

  33. V.V. Uchaikin, V.M. Zolotarev, Chance and Stability. Stable Distributions and their Applications. VSP, Utrecht, 1999.

    Book  MATH  Google Scholar 

  34. L. Yan, X. Yin, Large deviation principle for a space-time fractional stochastic heat equation with fractional noise. Fract. Calc. Appl. Anal. 21, No 2 (2018), 462–485; DOI: 10.1515/fca-2018-0026; https://www.degruyter.com/view/j/fca.2018.21.issue-2/issue-files/fca.2018.21.issue-2.xml.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Song Deng.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, CS., Schilling, R.L. Exact Asymptotic Formulas for the Heat Kernels of Space and Time-Fractional Equations. FCAA 22, 968–989 (2019). https://doi.org/10.1515/fca-2019-0052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2019-0052

MSC 2010

Key Words and Phrases

Navigation