Abstract
This paper studies the existence and uniqueness of solutions for a new boundary value problem of coupled nonlinear multi-term fractional differential equations supplemented with three-point coupled boundary conditions. We make use of Banach’s contraction principle and Leray-Schauder’s alternative to derive the desired results, which are well illustrated with examples. We emphasize that the obtained results are new and make a significant contribution to the existing literature on the topic.
Similar content being viewed by others
References
B. Ahmad, A. Alsaedi, S.K. Ntouyas, J. Tariboon, Hadamard-type Fractional Differential Equations, Inclusions and Inequalities. Springer, Cham, (2017) DOI: 10.1007/978-3-319-52141-1.
B. Ahmad, M.M. Matar, O.M. El-Salmy, Existence of solutions and Ulam stability for Caputo type sequential fractional differential equations of order α ∈ (2, 3). Intern. J. Anal. Appl. 15 (2017), 86–101.
B. Ahmad, J.J. Nieto, A. Alsaedi, M.H. Aqlan, A coupled system of Caputo-type sequential fractional differential equations with coupled (periodic/anti-periodic type) boundary conditions. Mediterr. J. Math. 14 (2017) Art. 227 15 pp.; DOI: 10.1007/s00009-017-1027-2.
B. Ahmad, S.K. Ntouyas, A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions. Chaos Solitons Fractals. 83 (2016), 234–241; DOI: 10.1016/j.chaos.2015.12.014.
B. Ahmad, S. Ntouyas, A fully Hadamard-type integral boundary value problem of a coupled system of fractional differential equations. Fract. Calc. Appl. Anal. 17, No 2 (2014), 348–360; DOI: 10.2478/s13540-014-0173-5; https://www.degruyter.com/view/j/fca.2014.17.issue-2/issue-files/fca.2014.17.issue-2.xml.
B. Ahmad, S. Ntouyas, Nonlocal fractional boundary value problems with slit-strips integral boundary conditions. Fract. Calc. Appl. Anal. 18, No 1 (2015), 261–280; DOI: 10.1515/fca-2015-0017; https://www.degruyter.com/view/j/fca.2015.18.issue-1/issue-files/fca.2015.18.issue-1.xml.
A. Carvalho, C.M.A Pinto, A delay fractional order model for the co-infection of malaria and HIV/AIDS. Int. J. Dynam. Control. 5 (2017), 168–186.
Y. Ding, Z. Wang, H. Ye, Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Contr. Sys. Techn. 20 (2012), 763–769.
Z.M. Ge, C.Y. Ou, Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal. Chaos Solitons Fractals. 35 (2008), 705–717.
A. Granas, J. Dugundji, Fixed Point Theory. Springer-Verlag, New York, (2005).
J. Henderson, R. Luca, Positive solutions for a system of coupled fractional boundary value problems. Lith. Math. J. 58 (2018), 15–32; DOI: 10.1007/s10986-018-9385-4.
B. Ahmad, R. Luca, Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions. Fract. Calc. Appl. Anal. 21, No 2 (2018), 423–441; DOI: 10.1515/fca-2018-0024; https://www.degruyter.com/view/j/fca.2018.21.issue-2/issue-files/fca.2018.21.issue-2.xml.
J. Henderson, R. Luca, A. Tudorache, On a system of fractional differential equations with coupled integral boundary conditions. Fract. Calc. Appl. Anal. 18, No 2 (2015), 361–386; DOI: 10.1515/fca-2015-0024; https://www.degruyter.com/view/j/fca.2015.18.issue-2/issue-files/fca.2015.18.issue-2.xml.
B. Henry, S. Wearne, Existence of Turing instabilities in a two-species fractional reaction-diffusion system. SIAM J. Appl. Math. 62 (2002), 870–887; DOI: 10.1137/S0036139900375227.
R. Herrmann, Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore, (2011) DOI: 10.1142/11107.
N. Heymans, J.C. Bauwens, Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheol. Acta. 33 (1994), 210–219.
R. Hilfer, Anomalous Transport: Foundations and Applications, Anomalous Transport: Foundations and Applications (Eds.) R. Klages, G. Radons, I.M. Sokolov). Wiley-VCH, (2008), 17–74.
W. Glockle, T. Nonnenmacher, A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68 (1995), 46–53.
M. Javidi, B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton–zooplankton system. Ecol. Model. 318 (2015), 8–18.
A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, (2006).
Y. Liu, Boundary value problems of singular multi-term fractional differential equations with impulse effects. Math. Nachr. 289 (2016), 1526–1547; DOI: 10.1002/mana.201400339.
F. Mainardi, Some basic problems in continuum and statistical mechanics. In: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics. Springer, Berlin, (1997), 291–348.
R.L. Magin, Fractional Calculus in Bioengineering. Begell House Publishers, (2006).
T. Matsuzaki, M. Nakagawa, A chaos neuron model with fractional differential equation. J. Phys. Soc. Jpn. 72 (2003), 2678–2684.
S. Picozzi, B.J. West, Fractional Langevin model of memory in financial markets. Phys. Rev. E. 66 (2002), 46–118.
R. Schumer, D. Benson, M.M. Meerschaert, S.W. Wheatcraft, Eulerian derivative of the fractional advection-dispersion equation. J. Contam. Hydrol. 48 (2001), 69–88.
B. Senol, C. Yeroglu, Frequency boundary of fractional order systems with nonlinear uncertainties. J. Franklin Inst. 350 (2013), 1908–1925; DOI: 10.1016/j.jfranklin.2013.05.010.
I.M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics. Phys. Today. 55 (2002), 48–54.
S. Stanek, Periodic problem for two-term fractional differential equations. Fract. Calc. Appl. Anal. 20, No 3 (2017), 662–678; DOI: 10.1515/fca-2017-0035; https://www.degruyter.com/view/j/fca.2017.20.issue-3/issue-files/fca.2017.20.issue-3.xml.
N. Thongsalee, S.K. Ntouyas, J. Tariboon, Nonlinear Riemann-Liouville fractional differential equations with nonlocal Erdélyi-Kober fractional integral conditions. Frac. Calc. Appl. Anal. 19, No 2 (2016), 480–497; DOI: 10.1515/fca-2016-0025; https://www.degruyter.com/view/j/fca.2016.19.issue-2/issue-files/fca.2016.19.issue-2.xml.
F. Zhang, G. Chen, C. Li, J. Kurths, Chaos synchronization in fractional differential systems. Phil. Trans. R. Soc. A. 371 (2013) Art. 20120155 10.1098/rsta.2012.0155.
J.R. Wang, Y. Zhang, Analysis of fractional order differential coupled systems. Math. Method. Appl. Sci. 38 (2015), 3322–3338; DOI: 10.1002/mma.3298.
P.J. Torvik, R.L. Bagley, On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51 (1984), 294–298; DOI: 10.1115/1.3167615.
Author information
Authors and Affiliations
About this article
Cite this article
Ahmad, B., Alghamdi, N., Alsaedi, A. et al. A System of Coupled Multi-Term Fractional Differential Equations with Three-Point Coupled Boundary Conditions. FCAA 22, 601–616 (2019). https://doi.org/10.1515/fca-2019-0034
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1515/fca-2019-0034