Skip to main content
Log in

A System of Coupled Multi-Term Fractional Differential Equations with Three-Point Coupled Boundary Conditions

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This paper studies the existence and uniqueness of solutions for a new boundary value problem of coupled nonlinear multi-term fractional differential equations supplemented with three-point coupled boundary conditions. We make use of Banach’s contraction principle and Leray-Schauder’s alternative to derive the desired results, which are well illustrated with examples. We emphasize that the obtained results are new and make a significant contribution to the existing literature on the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Ahmad, A. Alsaedi, S.K. Ntouyas, J. Tariboon, Hadamard-type Fractional Differential Equations, Inclusions and Inequalities. Springer, Cham, (2017) DOI: 10.1007/978-3-319-52141-1.

    Book  Google Scholar 

  2. B. Ahmad, M.M. Matar, O.M. El-Salmy, Existence of solutions and Ulam stability for Caputo type sequential fractional differential equations of order α ∈ (2, 3). Intern. J. Anal. Appl. 15 (2017), 86–101.

    MATH  Google Scholar 

  3. B. Ahmad, J.J. Nieto, A. Alsaedi, M.H. Aqlan, A coupled system of Caputo-type sequential fractional differential equations with coupled (periodic/anti-periodic type) boundary conditions. Mediterr. J. Math. 14 (2017) Art. 227 15 pp.; DOI: 10.1007/s00009-017-1027-2.

  4. B. Ahmad, S.K. Ntouyas, A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions. Chaos Solitons Fractals. 83 (2016), 234–241; DOI: 10.1016/j.chaos.2015.12.014.

    Article  MathSciNet  Google Scholar 

  5. B. Ahmad, S. Ntouyas, A fully Hadamard-type integral boundary value problem of a coupled system of fractional differential equations. Fract. Calc. Appl. Anal. 17, No 2 (2014), 348–360; DOI: 10.2478/s13540-014-0173-5; https://www.degruyter.com/view/j/fca.2014.17.issue-2/issue-files/fca.2014.17.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  6. B. Ahmad, S. Ntouyas, Nonlocal fractional boundary value problems with slit-strips integral boundary conditions. Fract. Calc. Appl. Anal. 18, No 1 (2015), 261–280; DOI: 10.1515/fca-2015-0017; https://www.degruyter.com/view/j/fca.2015.18.issue-1/issue-files/fca.2015.18.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  7. A. Carvalho, C.M.A Pinto, A delay fractional order model for the co-infection of malaria and HIV/AIDS. Int. J. Dynam. Control. 5 (2017), 168–186.

    Article  MathSciNet  Google Scholar 

  8. Y. Ding, Z. Wang, H. Ye, Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Contr. Sys. Techn. 20 (2012), 763–769.

    Article  Google Scholar 

  9. Z.M. Ge, C.Y. Ou, Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal. Chaos Solitons Fractals. 35 (2008), 705–717.

    Article  Google Scholar 

  10. A. Granas, J. Dugundji, Fixed Point Theory. Springer-Verlag, New York, (2005).

    MATH  Google Scholar 

  11. J. Henderson, R. Luca, Positive solutions for a system of coupled fractional boundary value problems. Lith. Math. J. 58 (2018), 15–32; DOI: 10.1007/s10986-018-9385-4.

    Article  MathSciNet  Google Scholar 

  12. B. Ahmad, R. Luca, Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions. Fract. Calc. Appl. Anal. 21, No 2 (2018), 423–441; DOI: 10.1515/fca-2018-0024; https://www.degruyter.com/view/j/fca.2018.21.issue-2/issue-files/fca.2018.21.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  13. J. Henderson, R. Luca, A. Tudorache, On a system of fractional differential equations with coupled integral boundary conditions. Fract. Calc. Appl. Anal. 18, No 2 (2015), 361–386; DOI: 10.1515/fca-2015-0024; https://www.degruyter.com/view/j/fca.2015.18.issue-2/issue-files/fca.2015.18.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  14. B. Henry, S. Wearne, Existence of Turing instabilities in a two-species fractional reaction-diffusion system. SIAM J. Appl. Math. 62 (2002), 870–887; DOI: 10.1137/S0036139900375227.

    Article  MathSciNet  Google Scholar 

  15. R. Herrmann, Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore, (2011) DOI: 10.1142/11107.

    Book  Google Scholar 

  16. N. Heymans, J.C. Bauwens, Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheol. Acta. 33 (1994), 210–219.

    Article  Google Scholar 

  17. R. Hilfer, Anomalous Transport: Foundations and Applications, Anomalous Transport: Foundations and Applications (Eds.) R. Klages, G. Radons, I.M. Sokolov). Wiley-VCH, (2008), 17–74.

  18. W. Glockle, T. Nonnenmacher, A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68 (1995), 46–53.

    Article  Google Scholar 

  19. M. Javidi, B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton–zooplankton system. Ecol. Model. 318 (2015), 8–18.

    Article  Google Scholar 

  20. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, (2006).

    MATH  Google Scholar 

  21. Y. Liu, Boundary value problems of singular multi-term fractional differential equations with impulse effects. Math. Nachr. 289 (2016), 1526–1547; DOI: 10.1002/mana.201400339.

    Article  MathSciNet  Google Scholar 

  22. F. Mainardi, Some basic problems in continuum and statistical mechanics. In: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics. Springer, Berlin, (1997), 291–348.

    Chapter  Google Scholar 

  23. R.L. Magin, Fractional Calculus in Bioengineering. Begell House Publishers, (2006).

    Google Scholar 

  24. T. Matsuzaki, M. Nakagawa, A chaos neuron model with fractional differential equation. J. Phys. Soc. Jpn. 72 (2003), 2678–2684.

    Article  Google Scholar 

  25. S. Picozzi, B.J. West, Fractional Langevin model of memory in financial markets. Phys. Rev. E. 66 (2002), 46–118.

    MathSciNet  Google Scholar 

  26. R. Schumer, D. Benson, M.M. Meerschaert, S.W. Wheatcraft, Eulerian derivative of the fractional advection-dispersion equation. J. Contam. Hydrol. 48 (2001), 69–88.

    Article  Google Scholar 

  27. B. Senol, C. Yeroglu, Frequency boundary of fractional order systems with nonlinear uncertainties. J. Franklin Inst. 350 (2013), 1908–1925; DOI: 10.1016/j.jfranklin.2013.05.010.

    Article  MathSciNet  Google Scholar 

  28. I.M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics. Phys. Today. 55 (2002), 48–54.

    Article  Google Scholar 

  29. S. Stanek, Periodic problem for two-term fractional differential equations. Fract. Calc. Appl. Anal. 20, No 3 (2017), 662–678; DOI: 10.1515/fca-2017-0035; https://www.degruyter.com/view/j/fca.2017.20.issue-3/issue-files/fca.2017.20.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  30. N. Thongsalee, S.K. Ntouyas, J. Tariboon, Nonlinear Riemann-Liouville fractional differential equations with nonlocal Erdélyi-Kober fractional integral conditions. Frac. Calc. Appl. Anal. 19, No 2 (2016), 480–497; DOI: 10.1515/fca-2016-0025; https://www.degruyter.com/view/j/fca.2016.19.issue-2/issue-files/fca.2016.19.issue-2.xml.

    Article  Google Scholar 

  31. F. Zhang, G. Chen, C. Li, J. Kurths, Chaos synchronization in fractional differential systems. Phil. Trans. R. Soc. A. 371 (2013) Art. 20120155 10.1098/rsta.2012.0155.

  32. J.R. Wang, Y. Zhang, Analysis of fractional order differential coupled systems. Math. Method. Appl. Sci. 38 (2015), 3322–3338; DOI: 10.1002/mma.3298.

    Article  MathSciNet  Google Scholar 

  33. P.J. Torvik, R.L. Bagley, On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51 (1984), 294–298; DOI: 10.1115/1.3167615.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, B., Alghamdi, N., Alsaedi, A. et al. A System of Coupled Multi-Term Fractional Differential Equations with Three-Point Coupled Boundary Conditions. FCAA 22, 601–616 (2019). https://doi.org/10.1515/fca-2019-0034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2019-0034

MSC 2010

Key Words and Phrases

Navigation