Skip to main content
Log in

Infinitely many solutions to boundary value problem for fractional differential equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Variational methods and critical point theorems are used to discuss existence of infinitely many solutions to boundary value problem for fractional order differential equations where Riemann-Liouville fractional derivatives and Caputo fractional derivatives are used. An example is given to illustrate our result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Averna, S. Tersian, E. Tornatore, On the existence and multiplicity of solutions for Dirichlet’s problem for fractional differential equations. Fract. Calc. Appl. Anal. 19, No 1 (2016), 253–266; DOI: 10.1515/fca-2016-0014; https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  2. D. Averna, D. O’Regan, E. Tornatore, Multiple solutions for fractional boundary value problems. Bull. Iran. Math. Soc. 44, (2018), 137–148.

    Article  MathSciNet  Google Scholar 

  3. D. Averna, E. Tornatore, Infinitely many weak solutions for a mixed boundary value system with (p1, …,pm)-Laplacian. Electr. J. Qual. Theo. Diff. Equa. 57, (2014), 1–8.

    MATH  Google Scholar 

  4. G. Bonanno, A critical point theorem via Ekeland variational principle. Nonlinear Anal. 75, (2012), 2992–3007.

    Article  MathSciNet  Google Scholar 

  5. G. Bonanno, G. D’Aguí, On the Neumann problem for elliptic equations involving the p-Laplacian. J. Math. Anal. Appl. 358, (2009), 223–228.

    Article  MathSciNet  Google Scholar 

  6. G. Bonanno, R. Rodríguez-L’opez, S. Tersian, Existence of solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 17, No 3 (2014), 717–744; DOI: 10.2478/s13540-014-0196-y; https://www.degruyter.com/view/j/fca.2014.17.issue-3/issue-files/fca.2014.17.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  7. G. Bonanno, E. Tornatore, Infinitely many solutions for a mixed boundary value problem. Ann. Polon. Math. 99, (2010), 285–293.

    Article  MathSciNet  Google Scholar 

  8. F. Cammaroto, A. Chinní, Infinitely many solutions for two points boundary value problem. Far East Journal of Mathematical Science 11, No 1 (2003), 41–51.

    MathSciNet  MATH  Google Scholar 

  9. P. Candito, Infinitely many solutions to a Neumann problem for elliptic equations involving the p-Laplacian and with discontinuous nonlinearities. Proc. Edinb. Math. Soc. 45, No 2 (2002), 397–409.

    Article  MathSciNet  Google Scholar 

  10. J. Chen, X. H. Tang, Existence and multiplicity of solutions for some fractional Boundary value problem via citical point theory. Abstract Appl. Anal. 2012, (2012), 1–21.

    Google Scholar 

  11. G. Cottone, M. Di Paola, M. Zingales, Elastic waves propagation in 1D fractional non local continuum. Physica E 42, (2009), 95–103.

    Article  Google Scholar 

  12. G. D’Aguí, Infinitely many solutions for a double Sturm-Liouville problem. J. Glob. Optim. 54, (2012), 619–625.

    Article  MathSciNet  Google Scholar 

  13. M. Di Paola, M. Zingales, Long-range cohesive interactions of non-local continuum faced by fractional calculus. Internat. J. of Solids and Structures 45, (2008), 5642–5659.

    Article  Google Scholar 

  14. F. Jiao, Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory. Comput. Math. Appl. 62, (2011), 1181–1199.

    Article  MathSciNet  Google Scholar 

  15. F. Jiao, Y. Zhou, Existence results for fractional boundary value problems via critical point theory. Internat. J. Bifur. Chaos. Appl. Sci. Engrg. 22, No 4 (2012), 1–17.

    Article  MathSciNet  Google Scholar 

  16. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam (2006).

    MATH  Google Scholar 

  17. S. Marano, D. Motreanu, Infinitely many critical points of non-differentiable functions and applications to the Neumann-type problem involving p-Laplacian. J. Differential Equations 182, (2002), 108–120.

    Article  MathSciNet  Google Scholar 

  18. P. Omari, F. Zanolin, Infinitely many solutions for a quasilinear elliptic problem with an oscillatory potential. Commun. in Partial Differential Equations 21, No 5-6 (1996), 721–733.

    Article  MathSciNet  Google Scholar 

  19. I. Podlubny, Fractional Differential Equations. Ser. Mathematics in Science and Engineering # 198, Academic Press (1999).

    MATH  Google Scholar 

  20. B. Ricceri, A general variational principle and some of its applications. J. Comput. Appl. Math. 113, (2000), 401–410; DOI: 10.2478/s13540-014-0212-2; https://www.degruyter.com/view/j/fca.2014.17.issue-4/issue-files/fca.2014.17.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  21. R. Rodríguez-López, S. Tersian, Existence of solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 17, No 4 (2014), 1016–1038; DOI: 10.2478/s13540-014-0212-2; https://www.degruyter.com/view/j/fca.2014.17.issue-4/issue-files/fca.2014.17.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  22. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Longhorne, PA - USA (1993).

    MATH  Google Scholar 

  23. Z. Zhang, J. Li, Variational approach to solutions for a class of fractional boundary value problems. Electr. J. Qual. Theo. Diff. Equa. 11, (2015), 1–10.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Averna.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averna, D., Sciammetta, A. & Tornatore, E. Infinitely many solutions to boundary value problem for fractional differential equations. FCAA 21, 1585–1597 (2018). https://doi.org/10.1515/fca-2018-0083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0083

MSC 2010

Key Words and Phrases

Navigation