Skip to main content
Log in

A variational approach for boundary value problems for impulsive fractional differential equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

By using an abstract critical point result for differentiable and parametric functionals due to B. Ricceri, we establish the existence of infinitely many classical solutions for fractional differential equations subject to boundary value conditions and impulses. More precisely, we determine some intervals of parameters such that the treated problems admit either an unbounded sequence of solutions, provided that the nonlinearity has a suitable oscillatory behaviour at infinity, or a pairwise distinct sequence of solutions that strongly converges to zero if a similar behaviour occurs at zero. No symmetric condition on the nonlinear term is assumed. Two examples are then given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Afrouzi, A. Hadjian, V. Rădulescu, Variational analysis for Dirichlet impulsive differential equations with oscillatory nonlinearity. Port. Math. 70, No 3 (2013), 225–242.

    Article  MathSciNet  Google Scholar 

  2. G.A. Afrouzi, A. Hadjian, V. Rădulescu, Variational approach to fourth-order impulsive differential equations with two control parameters. Results Math. 65, No 3-4 (2014), 371–384.

    Article  MathSciNet  Google Scholar 

  3. R. Agarwal, S. Hristova, D. O’Regan, A Survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations. Fract. Calc. Appl. Anal. 19, No 2 (2016), 290–318; DOI: 10.1515/fca-2016-0017; https://www.degruyter.com/view/j/fca.2016.19.issue-2/issue-files/fca.2016.19.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  4. R. Agarwal, S. Hristova, D. O’Regan, Non-instantaneous impulses in Caputo fractional differential equations. Fract. Calc. Appl. Anal. 20, No 3 (2017), 595–622; DOI: 10.1515/fca-2017-0032; https://www.degruyter.com/view/j/fca.2017.20.issue-3/issue-files/fca.2017.20.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  5. R. Agarwal, S. Hristova, D. O’Regan, Some stability properties related to initial time difference for Caputo fractional differential equations. Fract. Calc. Appl. Anal. 21, No 1 (2018), 72–93; DOI: 10.1515/fca-2018-0005; https://www.degruyter.com/view/j/fca.2018.21.issue-1/issue-files/fca.2018.21.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  6. D. Averna, S. Tersian, E. Tornatore, On the existence and multiplicity of solutions for Dirichlet’s problem for fractional differential equations. Fract. Calc. Appl. Anal. 19, No 1 (2016), 253–266; DOI: 10.1515/fca-2016-0014; https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  7. C. Bai, Existence of solutions for a nonlinear fractional boundary value problem via a local minimum theorem. Electron. J. Differential Equations 2012, No 176 (2012), 1–9.

    MathSciNet  Google Scholar 

  8. G. Bonanno, B. Di Bella, J. Henderson, Existence of solutions to second-order boundary-value problems with small perturbations of impulses. Electron. J. Differential Equations 2013, No 126 (2013), 1–14.

    MathSciNet  MATH  Google Scholar 

  9. G. Bonanno, S.A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition. Appl. Anal. 89, No 1 (2010), 1–10.

    Article  MathSciNet  Google Scholar 

  10. G. Bonanno, R. Rodríguez-López, S. Tersian, Existence of solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 17, No 3 (2014), 717–744; DOI: 10.2478/s13540-014-0196-y; https://www.degruyter.com/view/j/fca.2014.17.issue-3/issue-files/fca.2014.17.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  11. J. Chen, X.H. Tang, Existence and multiplicity of solutions for some fractional boundary value problem via critical point theory. Abstr. Appl. Anal. 2012, (2012), Article ID 648635, (21 p.).

  12. A.M.A. El-Sayed, Nonlinear functional differential equations of arbitrary orders. Nonlinear Anal. 33, No 2 (1998), 181–186.

    Article  MathSciNet  Google Scholar 

  13. M. Ferrara, G. Molica Bisci, Remarks for one-dimensional fractional equations. Opuscula Math. 34, No 4 (2014), 691–698.

    Article  MathSciNet  Google Scholar 

  14. M. Galewski, G. Molica Bisci, Existence results for one-dimensional fractional equations. Math. Methods Appl. Sci. 39, No 6 (2016), 1480–1492.

    Article  MathSciNet  Google Scholar 

  15. P.K. George, A.K. Nandakumaran, A. Arapostathis, A note on controllability of impulsive systems. J. Math. Anal. Appl. 241, No 2 (2000), 276–283.

    Article  MathSciNet  Google Scholar 

  16. S. Heidarkhani, Multiple solutions for a nonlinear perturbed fractional boundary value problem. Dynam. Systems Appl. 23, No 1 (2014), 317–332.

    MathSciNet  MATH  Google Scholar 

  17. S. Heidarkhani, Infinitely many solutions for nonlinear perturbed fractional boundary value problems. An. Univ. Craiova Ser. Mat. Inform. 41, No 1 (2014), 88–103.

    MathSciNet  MATH  Google Scholar 

  18. F. Jiao, Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory. Comput. Math. Appl. 62, No 3 (2011), 1181–1199.

    Article  MathSciNet  Google Scholar 

  19. F. Jiao, Y. Zhou, Existence results for fractional boundary value problem via critical point theory. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 22, No 4 (2012), 1–17.

    Article  MathSciNet  Google Scholar 

  20. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier Science B.V., Amsterdam (2006).

    Google Scholar 

  21. A.A. Kilbas, J.J. Trujillo, Differential equations of fractional order: methods, results and problems. I. Appl. Anal. 78, No 1-2 (2001), 153–192.

    Article  MathSciNet  Google Scholar 

  22. A.A. Kilbas, J.J. Trujillo, Differential equations of fractional order: methods, results and problems. II. Appl. Anal. 81, No 2 (2002), 435–493.

    Article  MathSciNet  Google Scholar 

  23. A. Krist’aly, V. Rădulescu, Cs. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Math. and its Appl., No 136, Cambridge Univ. Press, Cambridge (2010).

    Google Scholar 

  24. V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive Differential Equations, Ser. in Modern Applied Mathematics, Vol. 6, World Scientific, Teaneck, NJ (1989).

    Google Scholar 

  25. J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems. Springer-Verlag, Berlin (1989).

    Book  Google Scholar 

  26. J. Nieto, D. O’Regan, Variational approach to impulsive differential equations. Nonlinear Anal. Real World Appl. 10, No 2 (2009), 680–690.

    Article  MathSciNet  Google Scholar 

  27. N. Nyamoradi, R. Rodríguez-López, On boundary value problems for impulsive fractional differential equations. Appl. Math. Comput. 271, (2015), 874–892.

    MathSciNet  MATH  Google Scholar 

  28. R. Rodríguez-López, S. Tersian, Multiple solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 17, No 4 (2014), 1016–1038; DOI: 10.2478/s13540-014-0212-2; https://www.degruyter.com/view/j/fca.2014.17.issue-4/issue-files/fca.2014.17.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  29. B. Ricceri, A general variational principle and some of its applications. J. Comput. Appl. Math. 113, No 1-2 (2000), 401–410.

    Article  MathSciNet  Google Scholar 

  30. M. Rivero, J.J. Trujillo, L. Vázquez, M.P. Velasco, Fractional dynamics of populations. Appl. Math. Comput. 218, (2011), 1089–1095.

    MathSciNet  MATH  Google Scholar 

  31. A.M. Samoilenko, N.A. Perestyuk, Impulsive Differential Equations. World Scientific, Singapore (1995).

    Book  Google Scholar 

  32. J. Shen, J. Li, Existence and global attractivity of positive periodic solutions for impulsive predator-prey model with dispersion and time delays. Nonlinear Anal. Real World Appl. 10, No 1 (2009), 227–243.

    Article  MathSciNet  Google Scholar 

  33. H.-R. Sun, Q.-G. Zhang, Existence of solutions for a fractional boundary value problem via the mountain pass method and an iterative technique. Comput. Math. Appl. 64, No 10 (2012), 3436–3443.

    Article  MathSciNet  Google Scholar 

  34. J. Xiao, J.J. Nieto, Variational approach to some damped Dirichlet nonlinear impulsive differential equations. J. Franklin Inst. 348, No 2 (2011), 369–377.

    Article  MathSciNet  Google Scholar 

  35. J. Zhou, Y. Li, Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects. Nonlinear Anal. 71, No 7-8 (2009), 2856–2865.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghasem A. Afrouzi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afrouzi, G.A., Hadjian, A. A variational approach for boundary value problems for impulsive fractional differential equations. FCAA 21, 1565–1584 (2018). https://doi.org/10.1515/fca-2018-0082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0082

MSC 2010

Key Words and Phrases

Navigation