Skip to main content
Log in

Extrapolating for attaining high precision solutions for fractional partial differential equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This paper aims at obtaining a high precision numerical approximation for fractional partial differential equations. This is achieved through appropriate discretizations: firstly we consider the application of shifted Legendre or Chebyshev polynomials to get a spatial discretization, followed by a temporal discretization where we use the Implicit Euler method (although any other temporal integrator could be used). Finally, the use of an extrapolation technique is considered for improving the numerical results. In this way a very accurate solution is obtained. An algorithm is presented, and numerical results are shown to demonstrate the validity of the present technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Azizi, G.B. Loghmani, A numerical method for space fractional diffusion equations using a semi-disrete scheme and Chebyshev collocation method. J. of Mathematics and Computer Science 8, (2014), 226–235.

    Article  Google Scholar 

  2. R.L. Bagley and P.J. Torvik, On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51, (1984), 294–298.

    Article  Google Scholar 

  3. R.T. Baillie, Long memory processes and fractional integration in econometrics. J. Econometrics 73, (1996), 5–59.

    Article  MathSciNet  Google Scholar 

  4. E. Barkai, R. Metzler, J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E 61, No 1 (2000), 132–138.

    Article  MathSciNet  Google Scholar 

  5. A.H. Bhrawy, M.M. Al-Shomran, A shifted Legendre spectral method for fractional-order multi-point boundary value problems. Advances in Difference Equations 4, (2012), 1–19.

    MathSciNet  Google Scholar 

  6. T.A. Biala, S.N. Jator, Block backward differentiation formulas for fractional differential equations. International J. of Engineering Mathematics, Art. ID 650425 (2015), 1–14.

    Google Scholar 

  7. D.W. Brzeziński, Accuracy problems of numerical calculation of fractional order derivatives and integrals applying the Riemann-Liouville/Caputo formulas. Appl. Mathematics and Nonlinear Sciences 1, (2016), 23–44.

    Article  MathSciNet  Google Scholar 

  8. J.C. Butcher, The role of orthogonal polynomials in numerical ordinary differential equations. J. Comput. Appl. Math. 43, (1992), 231–242.

    Article  MathSciNet  Google Scholar 

  9. M. Caputo, Linear model of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astr. Soc. 13, (1967), 529–539.

    Article  Google Scholar 

  10. P.J. Davis, Interpolation and Approximation. Dover, New York (1975).

    MATH  Google Scholar 

  11. E. Diekema, The fractional orthogonal derivative. Mathematics 3, (2015), 273–298.

    Article  Google Scholar 

  12. K. Diethelm, The Analysis of Fractional Differential Equations: An application-Oriented Exposition Using Differential Operators of Caputo Type. Lectures Notes in Mathematics. Springer, Berlin (2010).

    Book  Google Scholar 

  13. F.K. Hamasalh, P.O. Muhammad, Numerical solution of fractional differential equations by using fractional spline model. J. of Information and Computing Science 10, No 2 (2015), 98–105.

    Google Scholar 

  14. V. Gejji, H. Jafari, Solving a multi-order fractional differential equation using Adomian decomposition. Appl. Math. and Computation 189, No 1 (2007), 541–548.

    Article  MathSciNet  Google Scholar 

  15. S. Kazem, Exact solution of some linear fractional differential equations by Laplace transform. Intern. J. of Nonlinear Science 16, No 1 (2013), 3–11.

    MathSciNet  MATH  Google Scholar 

  16. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. 1st Ed., Elsevier (2006).

    MATH  Google Scholar 

  17. J.D. Lambert, Computational Methods in Ordinary Differential Equations. John Wiley & Sons (1974).

    Google Scholar 

  18. F. Liu, V. Anh, I. Turner, Numerical solution of the space fractional Fokker-Planck equation. J. of Comput. and Appl. Math. 166, No 1 (2004), 209–219.

    Article  MathSciNet  Google Scholar 

  19. J.T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, (2011), 1140–1153.

    Article  MathSciNet  Google Scholar 

  20. W. Gautschi, Orthogonal Polynomials. Computation and Approximation. Oxford University Press, Oxford (2004).

    Book  Google Scholar 

  21. M.M. Khader, N.H. Sweilam, A.M.S. Mahdy, An efficient numerical method for solving the fractional diffusion equation. J. of Appl. Math. & Bioinformatics 1, No 2 (2011), 1–12.

    MATH  Google Scholar 

  22. M.M. Khader, T.S.E. Danaf, A.S. Hendy, Efficient spectral collocation method for solving multi-term fractional differential equations based on the generalized Laguerre polynomials. J. of Fractional Calculus and Applications 3, No 13 (2012), 1–14.

    MATH  Google Scholar 

  23. M. Klimek, On Solutions of Linear Fractional Differential Equations of a Variational Type. The Publ. Office of Czestochowa University of Technology (2009).

    Google Scholar 

  24. A. Pedas, E. Tamme, Numerical solution of nonlinear fractional differential equations by spline collocation methods. J. of Comput. and Appl. Math. 255, (2014), 216–230.

    Article  MathSciNet  Google Scholar 

  25. I. Podlubny, Fractional Differential Equations. Ser. Mathematics in Science and Engineering # 198. Academic Press Inc., San Diego, CA (1999).

    MATH  Google Scholar 

  26. J. Sabatier, P. Lanusse, P. Melchior, A. Oustaloup, Fractional Order Differentiation and Robust Control Design. International Ser. on Intelligent Systems, Control and Automation - Science and Engineering # 77, Springer (2015).

    Book  Google Scholar 

  27. M. Safari, M. Danesh, Application of Adomian’s decomposition method for the analytical solution of space fractional diffusion. Advances in Pure Mathematics 1, (2011), 345–350.

    Article  Google Scholar 

  28. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993).

    MATH  Google Scholar 

  29. M.N. Sherif, I. Abouelfarag, T.S. Amer, Numerical solution of fractional delay differential equations using spline functions. Internat. J. of Pure and Appl. Math. 90, (2014), 73–83.

    Article  Google Scholar 

  30. G. Szegö, Orthogonal Polynomials, 4th Ed. American Mathematical Society, Providence, Rhode Island (1975).

    MATH  Google Scholar 

  31. Y. Yang, Multi-order fractional differential equation using Legendre pseudo-spectral method. Applied Mathematics 4, (2013), 113–118.

    Article  Google Scholar 

  32. S.B. Yuste, L. Acedo, K. Lindenberg, Reaction front in an A + BC reaction-subdiffusion process. Phys. Rev., E 69, No 3 (2004), 1–10.

    Google Scholar 

  33. S.B. Yuste, K. Lindenberg, Subdiffusion-limited A + A reactions. Phys. Rev. Lett. 87, No 11 (2001), 1–4.

    Article  Google Scholar 

  34. M. Zayernouri, G. Karniadakis, Fractional spectral collocation method. SIAM J. Sci. Comput. 36, No 1 (2014), A40–A62.

    Article  MathSciNet  Google Scholar 

  35. M. Zayernouri, M. Ainsworth, G.E. Karniadakis, A unified Petrov-Galerkin spectral method for fractional PDEs. Computer Methods in Applied Mechanics and Engineering 283, (2015), 1545–1569.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Simões Patrício.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patrício, F.S., Patrício, M. & Ramos, H. Extrapolating for attaining high precision solutions for fractional partial differential equations. FCAA 21, 1506–1523 (2018). https://doi.org/10.1515/fca-2018-0079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0079

MSC 2010

Key Words and Phrases

Navigation