Skip to main content
Log in

Finite-time attractivity for semilinear tempered fractional wave equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We prove the existence and finite-time attractivity of solutions to semilinear tempered fractional wave equations with sectorial operator and superlinear nonlinearity. Our analysis is based on the α-resolvent theory, the fixed point theory for condensing maps and the local estimates of solutions. An application to a class of partial differential equations will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abbaszadeh, M. Dehghan, An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer. Algor. 75, (2017), 173–211.

    Article  MathSciNet  Google Scholar 

  2. M.S. Alrawashdeh, J.F. Kelly, M.M. Meerschaert, H.P. Scheffler, Applications of inverse tempered stable subordinators. Comput. Math. Appl. 73, (2017), 892–905.

    Article  MathSciNet  Google Scholar 

  3. N.T. Anh, T.D. Ke, Decay integral solutions for neutral fractional differential equations with infinite delays. Math. Methods Appl. Sci. 38, (2015), 1601–1622.

    Article  MathSciNet  Google Scholar 

  4. E.G. Bajlekova, Fractional Evolution Equations in Banach Spaces. Dissertation, Univ. Press Facilities, Eindhoven University of Technology (2001).

    MATH  Google Scholar 

  5. E.G. Bazhlekova, Subordination in a class of generalized time-fractional diffusion-wave equations. Fract. Calc. Appl. Anal. 21, No 4 (2018), 869–900; DOI: 10.1515/fca-2018-0048; https://www.degruyter.com/view/j/fca.2018.21.issue-4/issue-files/fca.2018.21.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  6. M. Chen, W. Deng, A second-order accurate numerical method for the space-time tempered fractional diffusion-wave equation. Appl. Math. Lett. 68, (2017), 87–93.

    Article  MathSciNet  Google Scholar 

  7. J. Deng, L. Zhao, Y. Wu, Fast predictor-corrector approach for the tempered fractional differential equations. Numer. Algor. 74, (2017), 717–754.

    Article  MathSciNet  Google Scholar 

  8. P. Giesl, M. Rasmussen, Areas of attraction for nonautonomous differential equations on finite time intervals. J. Math. Anal. Appl. 390, (2012), 27–46.

    Article  MathSciNet  Google Scholar 

  9. W. Fan, F. Liu, X. Jiang, I. Turner, A novel unstructured mesh finite element method for solving the time-space fractional wave equation on a two-dimensional irregular convex domain. Fract. Calc. Appl. Anal. 20, No 2 (2017), 352–383; DOI: 10.1515/fca-2017-0019; https://www.degruyter.com/view/j/fca.2017.20.issue-2/issue-files/fca.2017.20.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  10. A. Hanyga, Wave propagation in media with singular memory. Math. Comput. Model. 34, (2001), 1399–1421.

    Article  MathSciNet  Google Scholar 

  11. M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Walter de Gruyter, Berlin, New York (2001).

    Book  Google Scholar 

  12. T.D. Ke, D. Lan, Decay integral solutions for a class of impulsive fractional differential equations in Banach spaces. Fract. Calc. Appl. Anal. 17, No 1 (2014), 96–121; DOI: 10.2478/s13540-014-0157-5; https://www.degruyter.com/view/j/fca.2014.17.issue-1/issue-files/fca.2014.17.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  13. J. Kemppainen, Solvability of a Dirichlet problem for a time fractional diffusion-wave equation in Lipschitz domains. Fract. Calc. Appl. Anal. 15, No 2 (2012), 195–206; DOI: 10.2478/s13540-012-0014-3;.

    Article  MathSciNet  Google Scholar 

  14. Y. Kian, M. Yamamoto, On existence and uniqueness of solutions for semilinear fractional wave equations. Fract. Calc. Appl. Anal. 20, No 1 (2017), 117–138; DOI: 10.1515/fca-2017-0006; https://www.degruyter.com/view/j/fca.2017.20.issue-1/issue-files/fca.2017.20.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  15. A.N. Kochubei, Asymptotic properties of solutions of the fractional diffusion-wave equation. Fract. Calc. Appl. Anal. 17, No 3 (2014), 881–896; DOI: 10.2478/s13540-014-0203-3; https://www.degruyter.com/view/j/fca.2014.17.issue-3/issue-files/fca.2014.17.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  16. Y.-N. Li, H.-R. Sun, Z.S. Feng, Fractional abstract Cauchy problem with order α ∈ (1, 2). Dyn. Partial Differ. Equ. 13, No 2 (2016), 155–177.

    Article  MathSciNet  Google Scholar 

  17. C. Li, W. Deng, High order schemes for the tempered fractional diffusion equations. Adv. Comput. Math. 42, (2016), 543–572.

    Article  MathSciNet  Google Scholar 

  18. Yu. Luchko, Fractional wave equation and damped waves. J. Math. Phys. 54, (2013), 031505.

    Article  MathSciNet  Google Scholar 

  19. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010).

    Book  Google Scholar 

  20. M.M. Meerschaert, F. Sabzikar, M.S. Phanikumar, A. Zeleke, Tempered fractional time series model for turbulence in geophysical flows. J. of Statistical Mechanics: Theory and Experiment 14, (2014), 1742–5468.

    Google Scholar 

  21. M.M. Meerschaert, Y. Zhang, B. Baeumer, Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 35, (2008), L17403.

    Article  Google Scholar 

  22. I. Podlubny, Fractional differential equations. Academic Press, New York (1999).

    MATH  Google Scholar 

  23. Y. Povstenko, Solutions to the fractional diffusion-wave equation in a wedge. Fract. Calc. Appl. Anal. 17, No 1 (2014), 122–135; DOI: 10.2478/s13540-014-0158-4; https://www.degruyter.com/view/j/fca.2014.17.issue-1/issue-files/fca.2014.17.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  24. F. Sabzikar, M.M. Meerschaert, J.H. Chen, Tempered fractional calculus. J. Comput. Phys. 293, (2015), 14–28.

    Article  MathSciNet  Google Scholar 

  25. K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, (2011), 426–447.

    Article  MathSciNet  Google Scholar 

  26. S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, London (1993).

    MATH  Google Scholar 

  27. T.I. Seidman, Invariance of the reachable set under nonlinear perturbations. SIAM J. Control Optim. 25, (1987), 1173–1191.

    Article  MathSciNet  Google Scholar 

  28. I.I. Vrabie, C0-Semigroups and Applications. North-Holland Publishing Co., Amsterdam (2003).

    Google Scholar 

  29. H. Ye, J. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, (2007), 1075–1081.

    Article  MathSciNet  Google Scholar 

  30. Y. Zhou, Attractivity for fractional evolution equations with almost sectorial operators. Fract. Calc. Appl. Anal. 21, No 3 (2018), 786–800; DOI: 10.1515/fca-2018-0041; https://www.degruyter.com/view/j/fca.2018.21.issue-3/issue-files/fca.2018.21.issue-3.xml.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Dinh Ke.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, T.D., Quan, N.N. Finite-time attractivity for semilinear tempered fractional wave equations. FCAA 21, 1471–1492 (2018). https://doi.org/10.1515/fca-2018-0077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0077

MSC 2010

Key Words and Phrases

Navigation