Skip to main content
Log in

Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, a sensitivity analysis of optimal control problem for a class of systems described by nonlinear fractional evolution inclusions (NFEIs, for short) on Banach spaces is investigated. Firstly, the nonemptiness as well as the compactness of the mild solutions set S(ζ) (ζ being the initial condition) for the NFEIs are obtained, and we also present an extension Filippov’s theorem and whose proof differs from previous work only in some technical details. Finally, the optimal control problems described by NFEIs depending on the initial condition ζ and the parameter η are considered and the sensitivity properties of the optimal control problem are also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Aubin, A. Cellina, Differential Inclusions. Springer-Verlag, Berlin (1984).

    Book  Google Scholar 

  2. E. Balder, Necessary and sufficient conditions for L1-strong-weak lower semicontinuity of integral functional. Nonlinear Anal.: RWA 11, (1987), 1399–1404.

    Article  Google Scholar 

  3. D. Baleanu, A.K. Golmankhaneh, On electromagnetic field in fractional space. Nonlinear Anal.: RWA 11, No 1 (2010), 288–292.

    Article  MathSciNet  Google Scholar 

  4. J. Banas, K. Goebal, Measure of Noncompactness in Banach Spaces. Marcel Dekker Inc., New York (1980).

    Google Scholar 

  5. I. Benedetti, N.V. Loi, L. Malaguti, Nonlocal problems for differential inclusions in Hilbert spaces. Set-Valued Var. Anal. 22, (2014), 639–656.

    Article  MathSciNet  Google Scholar 

  6. I. Benedetti, L. Malaguti, V. Taddei, Semilinear evolution equations in abstract spaces and applications. Rend. Istit. Mat. Univ. Trieste 44, (2012), 371–388.

    MathSciNet  MATH  Google Scholar 

  7. Y. Cheng, R.P. Agarwal, D. O’Regan, Existence and controllability for nonlinear fractional differential inclusions with nonlinear boundary conditions and time-varying delay. Fract. Calc. Appl. Anal. 21, No 4 (2018), 960–980; DOI: 10.1515/fca-2018-0053; https://www.degruyter.com/view/j/fca.2018.21.issue-4/issue-files/fca.2018.21.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  8. Z. Denkowski, S. Migórski, N. Papageorgiu, An Introduction to Nonlinear Analysis (Theory). Kluwer Academic/Plenum Publishers, Boston (2003).

    Book  Google Scholar 

  9. H. Frankowska, A priori estimates for operational differential inclusions. J. Diff. Equat. 84, (1990), 100–128.

    Article  MathSciNet  Google Scholar 

  10. S. Hu, N.S. Papageorgiou, Handbook of Multivalued Analysis (Theory). Kluwer Acad. Publishers, Dordrecht-Boston-London (1997).

    Book  Google Scholar 

  11. K. Ito, K. Kunisch, Sensitivity analysis of solutions to optimization problems in Hilbert spaces with applications to optimal control and estimation. J. Diff. Equat. 99, (1992), 1–40.

    Article  MathSciNet  Google Scholar 

  12. M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Walter de Gruyter, Berlin (2001).

    Book  Google Scholar 

  13. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Ser. North-Holland Mathematics Studies # 204, Elservier Science B.V., Amsterdam (2006).

    MATH  Google Scholar 

  14. V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations. Nonlinear Anal. 69, (2008), 2677–2682.

    Article  MathSciNet  Google Scholar 

  15. J. Li, F. Liu, L. Feng, I. Turner, A novel finite volume method for the Riesz space distributed-order diffusion equation. Comput. Math. Appl. 74, (2017), 772–783.

    Article  MathSciNet  Google Scholar 

  16. X.W. Li, Z.H. Liu, Sensitivity analysis of optimal control problems described by differential hemivariational inequalities. SIAM J. Control Optim. 56, No 5 (2018), 3569–3597.

    Article  MathSciNet  Google Scholar 

  17. X.Y. Liu, Z.H. Liu, X. Fu, Relaxation in nonconvex optimal control problems described by fractional differential equations. J. Math. Anal. Appl. 409, No 1 (2014), 446–458.

    Article  MathSciNet  Google Scholar 

  18. Z.H. Liu, X.W. Li, Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives. SIAM J. Control Optim. 53, No 4 (2015), 1920–1933.

    Article  MathSciNet  Google Scholar 

  19. Z.H. Liu, S.D. Zeng, Y.R. Bai, Maximum principles for multi-term space-time variable-order fractional diffusion equations and their applications. Fract. Calc. Appl. Anal. 19, No 1 (2016), 188–211; DOI: 10.1515/fca-2016-0011; https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  20. N.I. Mahmudov, Finite-approximate controllability of fractional evolution equations: variational approach. Fract. Calc. Appl. Anal. 21, No 4 (2018), 919–936; DOI: 10.1515/fca-2018-0050; https://www.degruyter.com/view/j/fca.2018.21.issue-4/issue-files/fca.2018.21.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  21. F. Mainardi, On the initial value problem for the fractional diffusion-wave equation. Adv. Math. Appl. Sci. 23, (1994), 246–251.

    MathSciNet  Google Scholar 

  22. I. Matychyn, V. Onyshchenko, Optimal control of linear systems with fractional derivatives. Fract. Calc. Appl. Anal. 21, No 1 (2018), 134–150; DOI: 10.1515/fca-2018-0009; https://www.degruyter.com/view/j/fca.2018.21.issue-4/issue-files/fca.2018.21.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  23. S. Migórski, Sensitivity analysis of distributed-parameter optimal control problems for nonlinear parabolic equations. J. Optim. Theory Appl. 87, (1995), 595–613.

    Article  MathSciNet  Google Scholar 

  24. S. Migórski, A. Ochal, M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems. Ser. Advances in Mechanics and Mathematics #26, Springer, New York (2013).

    MATH  Google Scholar 

  25. N.S. Papageorgiou, Sensitivity analysis of evolution inclusions and its applications to the variational stability of optimal control problems. Houston J. Math. 16, (1990), 509–522.

    MathSciNet  MATH  Google Scholar 

  26. N.S. Papageorgiou, On the variational stability of a class of nonlinear parabolic optimal control problems. Zeitsch. Anal. Anwend. 15, (1996), 245–262.

    Article  MathSciNet  Google Scholar 

  27. N.S. Papageorgiou, S. Kyritsi, Handbook of Applied Analysis. Springer, New York (2009).

    MATH  Google Scholar 

  28. N.S. Papageorgiou, V.D. Radulescu, D.D. Repovš, Sensitivity analysis for optimal control problems governed by nonlinear evolution inclusions. Advances in Nonlinear Anal. 6, No 2 (2017), 199–235.

    Article  MathSciNet  Google Scholar 

  29. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  30. H.P. Ye, J.M. Gao, Y.S. Ding, A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, (2007), 1075–1081.

    Article  MathSciNet  Google Scholar 

  31. Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, (2010), 1063–1077.

    Article  MathSciNet  Google Scholar 

  32. Q.J. Zhu, On the solution set of differential inclusions in Banach space. J. Diff. Equat. 93, (1991), 213–237.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuwen Li.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, Y., Liu, Z. et al. Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions. FCAA 21, 1439–1470 (2018). https://doi.org/10.1515/fca-2018-0076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0076

MSC 2010

Key Words and Phrases

Navigation