Abstract
Motivated by recently proposed generalizations of the diffusion-wave equation with the Caputo time fractional derivative of order α ∈ (1, 2), in the present survey paper a class of generalized time-fractional diffusion-wave equations is introduced. Its definition is based on the subordination principle for Volterra integral equations and involves the notion of complete Bernstein function. Various members of this class are surveyed, including the distributed-order time-fractional diffusion-wave equation and equations governing wave propagation in viscoelastic media with completely monotone relaxation moduli.
Similar content being viewed by others
References
W. Arendt, C. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems. Birkhäuser, Basel (2011).
T. Atanacković, On a distributed derivative model of a viscoelastic body. C. R. Mécanique, 331 (2003), 687–692.
T. Atanacković, S. Konjik, L. Oparnica, D. Zorica, Thermodynamical restrictions and wave propagation for a class of fractional order viscoelastic rods. Abstr. Appl. Anal. 2011 (2011), Art. # 975694-1-32.
T. Atanacković, S. Pilipović, D. Zorica, Diffusion wave equation with two fractional derivatives of different order. J. Phys. A: Math. Theor. 40 (2007), 5319–5333.
T. Atanacković, S. Pilipović, D. Zorica, Time distributed-order diffusion-wave equation. I. Volterra-type equation. Proc. R. Soc. A 465 (2009), 1869–1891.
T. Atanacković, S. Pilipović, D. Zorica, Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations. Proc. R. Soc. A 465 (2009), 1893–1917.
T. Atanacković, S. Pilipović, B. Stanković, D. Zorica, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. John Wiley & Sons, London (2014).
R.L. Bagley, P.J. Torvik, On the fractional calculus model of viscoelastic behavior. J. Rheol. 30, No 198, 137–148.
E. Bajlekova, Fractional Evolution Equations in Banach Spaces. PhD Thesis, Eindhoven University of Technology, Eindhoven (2001); available at: https://pure.tue.nl/ws/files/2442305/200113270.pdf.
E. Bazhlekova, Subordination principle for fractional evolution equations. Fract. Calc. Appl. Anal. 3, No 3 (2000), 213–230.
E. Bazhlekova, Series solution of a nonlocal problem for a timefractional diffusion-wave equation with damping. C. R. Acad. Bulg. Sci. 66, No 8 (2013), 1091–1096.
E. Bazhlekova, On a nonlocal boundary value problem for the two-term time-fractional diffusion-wave equation. AIP Conf. Proc. 1561 (2013), 172–183.
E. Bazhlekova, I. Bazhlekov, Viscoelastic flows with fractional derivative models: computational approach via convolutional calculus of Dimovski. Fract. Calc. Appl. Anal. 17, No 4 (2014), 954–976; DOI: 10.2478/s13540-014-0209-x; https://www.degruyter.com/view/j/fca.2014.17.issue-4/issue-files/fca.2014.17.issue-4.xml.
E. Bazhlekova, Completely monotone functions and some classes of fractional evolution equations. Integr. Transf. Spec. Funct. 26 (2015), 737–752.
E. Bazhlekova, K. Tsocheva, Fractional Burgers’ model: thermodynamic constraints and completely monotonic relaxation function. C. R. Acad. Bulg. Sci. 69, No 7 (2016), 825–834.
E. Bazhlekova, I. Bazhlekov, Unidirectional flows of fractional Jeffreys fluids: Thermodynamic constraints and subordination. Comput. Math. Appl. 73 (2017), 1363–1376.
E. Bazhlekova, I. Bazhlekov, Stokes’ first problem for viscoelastic fluids with a fractional Maxwell model. Fractal Fract. 1, No 1 (2017), Art. # 7; DOI:10.3390/fractalfract1010007.
E. Bazhlekova, I. Bazhlekov, Subordination approach to multi-term time-fractional diffusion-wave equation. J. Comput. Appl. Math. 339 (2018), 179–192.
E. Bazhlekova, I. Bazhlekov, Complete monotonicity of the relaxation moduli of distributed-order fractional Zener model. AIP Conf. Proc. (2018) - AMEE 2018, To appear.
L. Boyadjiev, Yu. Luchko, The neutral-fractional telegraph equation. Math. Model. Nat. Phenom. 12 (2017), 51–67.
M. Caputo, Mean fractional order derivatives: Differential equations and filters. Annals Univ. Ferrara-Sez. VII-Sc. Mat. XLI (1995), 73–84.
M. Caputo, J.M. Carcione, Wave simulation in dissipative media described by distributed-order fractional time derivatives. J. Vib. Control 17 (2010), 1121–1130.
R.C. Cascaval, E.C. Eckstein, C.L. Frota, J.A. Goldstein, Fractional telegraph equations. J. Math. Anal. Appl. 276 (2002), 145–159.
J. Chen, F. Liu, V. Anh, Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 338 (2008), 1364–1377.
J. Chen, F. Liu, V. Anh, S. Shen, Q. Liu, C. Liao, The analytical solution and numerical solution of the fractional diffusion-wave equation with damping. Appl. Math. Comput. 219 (2012), 1737–1748.
I. Colombaro, A. Giusti, F. Mainardi, A class of linear viscoelastic models based on Bessel functions. Meccanica 52 (2017), 825–832.
D.O. Craiem, R.L. Armentano, A fractional derivative model to describe arterial viscoelasticity. Biorheology 44 (2007), 251–263.
D.O. Craiem, F.J. Rojo, J.M. Atienza, R.L. Armentano, G.V. Guinea, Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Phys. Med. Biol. 53 (2008), 4543.
X. Ding, G. Zhang, B. Zhao, Y. Wang, Unexpected viscoelastic deformation of tight sandstone: Insights and predictions from the fractional Maxwell model. Sci. Rep. 7 (2017), 11336; DOI: 10.1038/s41598-017- 11618-x.
V.A. Ditkin, A.P. Prudnikov, Integral Transforms and Operational Calculus. Pergamon Press, Oxford, New York (1965).
V.D. Djordjević, J. Jarić, B. Fabry, J.J. Fredberg, D. Stamenović, Fractional derivatives embody essential features of cell rheological behavior. Ann. Biomed. Eng. 31 (2003), 692–699.
W. Feller, An Introduction to Probability Theory and its Applications. Vol. 2, Wiley, New York (1971).
M. Ferreira, M.M. Rodrigues, N. Vieira, Fundamental solution of the multi-dimensional time fractional telegraph equation. Fract. Calc. Appl. Anal. 20 No 4 (2017), 868–894; DOI: 10.1515/fca-2017-0046; https://www.degruyter.com/view/j/fca.2017.20.issue-4/issue-files/fca.2017.20.issue-4.xml.
A. Fitouhi, I. Jebabli, E.L. Shishkina, S.M. Sitnik, Applications of integral transforms composition method to wave-type singular differential equations and index shift transmutations. Electron. J. Differ. Eq. 2018, No 130 (2018), 1–27.
Y. Fujita, Integrodifferential equations which interpolate the heat equation and the wave equation. Osaka J. Math. 27 (1990), 309–321.
R. Garrappa, F. Mainardi, G. Maione, Models of dielectric relaxation based on completely monotone functions. Fract. Calc. Appl. Anal. 19, No 5 (2016), 1105–1160; DOI: 10.1515/fca-2016-0060; https://www.degruyter.com/view/j/fca.2016.19.issue-5/issue-files/fca.2016.19.issue-5.xml.
R. Gorenflo, Stochastic processes related to time-fractional diffusionwave equation. Commun. Appl. Ind. Math. 6, No 2 (2015), e-531; DOI: 10.1685/journal.caim.531.
R. Gorenflo, A. Iskenderov, Yu. Luchko, Mapping between solutions of fractional diffusion-wave equations. Fract. Calc. Appl. Anal. 3 (2000), 75–86. 894 E. Bazhlekova
R. Gorenflo, A. Kilbas, F. Mainardi, S. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin, Heidelberg (2014).
R. Gorenflo, Y. Luchko, M. Stojanović, Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 16, No 2 (2013), 297–316; DOI: 10.2478/s13540-013-0019-6; https://www.degruyter.com/view/j/fca.2013.16.issue-2/issue-files/fca.2013.16.issue-2.xml.
R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order. In: A. Carpinteri, F. Mainardi (Eds.) Fractals and Fractional Calculus in Continuum Mechanics, Springer- Verlag, Wien/ New York (1997), 223–276.
R. Gorenflo, F. Mainardi, Subordination pathways to fractional diffusion. Eur. Phys. J. Special Topics 193 (2011), 119–132.
R. Gorenflo, R. Rutman, On ultraslow and intermediate processes. In: “Transform Methods and Special Functions, Sofia’ 94” (Proc. 1st Int. Workshop), P. Rusev, I. Dimovski, V. Kiryakova (Eds.) SCTP, Singapore (1995), 61–81.
A. Hanyga, Multidimensional solutions of time-fractional diffusionwave equations. Proc. R. Soc. Lond. A 458 (2002), 933–957.
A. Hanyga, Physically acceptable viscoelastic models. In: K. Hutter and Y. Wang (Eds.), Trends in Applications of Mathematics to Mechanics, Shaker Verlag GmbH, Aachen (2005), 125–136.
A. Hanyga, Wave propagation in linear viscoelastic media with completely monotonic relaxation moduli. Wave Motion 50 (2013), 909–928.
A. Hernández-Jiménez, J. Hernández-Santiago, A. Macias-García, J. Sánchez-González, Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model. Polym. Test. 21 (2002), 325–331.
R. Hilfer, Applications of Fractional Calculus in Physics. World Sci. Publ., Singapore (2000).
S. Holm, S.P. Näsholm, F. Prieur, R. Sinkus, Deriving fractional acoustic wave equations from mechanical and thermal constitutive equations. Comput. Math. Appl. 66 (2013), 621–629.
S. Holm, S.P. Näsholm, Comparison of fractional wave equations for power law attenuation in ultrasound and elastography. Ultrasound Med. Biol. 40, No 4 (2014), 695–703.
S. Holm, M.B. Holm, Restrictions on wave equations for passive media. J. Acoust. Soc. Am. 142 (2017), 1888–1896.
A. Jaishankar, G.H. McKinley, A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids. J. Rheol. 58 (2014), 1751–1788.
H. Jiang, F. Li, I. Turner, K. Burrage, Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain. Comput. Math. Appl. 64 (2012), 3377–3388.
A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics studies, Elsevier, Amsterdam (2006).
A. Kochubei, General fractional calculus, evolution equations, and renewal processes. Integr. Equ. Oper. Theory 71 (2011), 583–600.
A. Kochubei, Cauchy problem for fractional diffusion-wave equations with variable coefficients. Applicable Analysis 93 (2014), 2211–2242.
A. Kochubei, Asymptotic properties of solutions of the fractional diffusion-wave equation. Fract. Calc. Appl. Anal. 17, No 3 (2014), 881–896; DOI: 10.2478/s13540-014-0203-3; https://www.degruyter.com/view/j/fca.2014.17.issue-3/issue-files/fca.2014.17.issue-3.xml.
S. Konjik, L. Oparnica, D. Zorica, Distributed order fractional constitutive stress-strain relation in wave propagation modeling. arXiv Preprint, arXiv:1709.01339v2 (2018).
M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20, No 1 (2017), 7–51; DOI: 10.1515/fca- 2017-0002; https://www.degruyter.com/view/j/fca.2017.20.issue-1/issue-files/fca.2017.20.issue-1.xml.
C.G. Li, M. Kostić, M. Li, S. Piskarev, On a class of time-fractional differential equations. Fract. Calc. Appl. Anal. 15, No 4 (2012), 639–668; DOI: 10.2478/s13540-012-0044-x; https://www.degruyter.com/view/j/fca.2012.15.issue-4/issue-files/fca.2012.15.issue-4.xml.
Y. Liu, L. Zheng, X. Zhang, Unsteady MHD Couette flow of a generalized Oldroyd-B fluid with fractional derivative. Comput. Math. Appl. 61 (2011), 443–450.
J. Lubliner, V.P. Panoskaltsis, The modified Kuhn model of linear viscoelasticity. Int. J. Solids Struct. 29, No 24 (1992), 3099–3112.
Yu. Luchko, Fractional wave equation and damped waves. J. Math. Phys. 54 (2013), Art. # 031505.
Yu. Luchko, Multi-dimensional fractional wave equation and some properties of its fundamental solution. Commun. Appl. Ind. Math. 6 (2014), e–485.
Yu. Luchko, Subordination principles for the multi-dimensional space-time-fractional diffusion-wave equation. arXiv Preprint, arXiv:1802.04752 (2018).
Yu. Luchko, R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnamica 24 (1999), 207–233.
Yu. Luchko, F. Mainardi, Y. Povstenko, Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation. Comput. Math. Appl. 66 (2013), 774–784; DOI:10.1016/j.camwa.2013.01.005.
Yu. Luchko, M. Yamamoto, General time fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems. Fract. Calc. Appl. Anal. 19, No 3 (2016), 676–695; DOI: 10.1515/fca-2016-0036; https://www.degruyter.com/view/j/fca.2016.19.issue-3/issue-files/fca.2016.19.issue-3.xml.
J.A.T. Machado, V. Kiryakova, The chronicles of fractional calculus. Fract. Calc. Appl. Anal. 20, No 2 (2017), 307–336; DOI: 10.1515/fca- 2017-0017; https://www.degruyter.com/view/j/fca.2017.20.issue-2/issue-files/fca.2017.20.issue-2.xml.
F. Mainardi, Fractional relaxation-oscillation and fractional diffusionwave phenomena. Chaos Soliton. Fract. 7 (1996), 1461–1477.
F. Mainardi, The fundamental solutions for the fractional diffusionwave equation, Appl. Math. Lett. 9 (1996), 23–28.
F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010).
F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity. Fract. Calc. Appl. Anal. 15, No 4 (2012), 712–717; DOI: 10.2478/s13540-012-0048-6; https://www.degruyter.com/view/j/fca.2012.15.issue-4/issue-files/fca.2012.15.issue-4.xml.
F. Mainardi, Yu. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4 (2001), 153–192.
F. Mainardi, G. Pagnini, R. Gorenflo, Mellin transform and subordination laws in fractional diffusion processes. Fract. Calc. Appl. Anal. 6, No 4 (2003), 441–459.
F. Mainardi, P. Paradisi, Fractional diffusive waves. J. Comput. Acoust. 9 (2001), 1417–1436.
F. Mainardi, G. Spada, Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J. Special Topics 193 (2011), 133–160.
S. Majumdar, S. Hazra, M. Choudhury, S. Sinha, S. Das, T. Middya, S. Tarafdar, T. Dutta, A study of the rheological properties of visco-elastic materials using fractional calculus. Colloid Surface A 516 (2017), 181–189.
M.O. Mamchuev, Solutions of the main boundary value problems for the time-fractional telegraph equation by the Green function method. Fract. Calc. Appl. Anal. 20, No 1 (2017), 190–211; DOI: 10.1515/fca2017-0010; https://www.degruyter.com/view/j/fca.2017.20.issue-1/issue-files/fca.2017.20.issue-1.xml.
M. Meerschaert, R. Schilling, A. Sikorskii, Stochastic solutions for fractional wave equations. Nonlinear Dynam. 80 (2015), 1685–1695.
M. Meerschaert, B. Toaldo, Relaxation patterns and semi-Markov dynamics. arXiv Preprint, arXiv:1506.02951 (2015).
L. Miller, M. Yamamoto, Coefficient inverse problem for a fractional diffusion equation. Inverse Probl. 29 (2013), Art. # 075013.
S.P. Näsholm, S. Holm, On a fractional Zener elastic wave equation. Fract. Calc. Appl. Anal. 16, No 1 (2013), 26–50; DOI: 10.2478/s13540- 013-0003-1; https://www.degruyter.com/view/j/fca.2013.16.issue-1/issue-files/fca.2013.16.issue-1.xml.
E. Orsingher, L. Beghin, Time-fractional telegraph equations and telegraph processes with brownian time. Probab. Theory Relat. Fields 128 (2004), 141–160.
E. Orsingher, X. Zhao, The space-fractional telegraph equation and the related fractional telegraph processes. Chin. Ann. Math., Ser. B 45 (2003), 24–45.
J. Paneva-Konovska, From Bessel to Multi-Index Mittag-Leffler Functions: Enumerable Families, Series in them and Convergence. World Sci. Publ., London (2016).
J. Paneva-Konovska, Overconvergence of series in generalized Mittag- Leffler functions. Fract. Calc. Appl. Anal. 20, No 2 (2017), 506–520; DOI: 10.1515/fca-2017-0026; https://www.degruyter.com/view/j/fca.2017.20.issue-2/issue-files/fca.2017.20.issue-2.xml.
P. Perdikaris, G. Karniadakis, Fractional-order viscoelasticity in onedimensional blood flow models. Ann. Biomed. Eng. 42, No 5 (2014), 1012–1023; DOI: 10.1007/s10439-014-0970-3.
L.M. Petrovic, D.T. Spasic, T.M. Atanackovic, On a mathematical model of a human root dentin. Dent. Mater. 21, No 2 (2005), 125–128.
L. Preziosi, D.D. Joseph, Stokes’ first problem for viscoelastic fluids. J. Non Newtonian Fluid Mech. 25 (1987), 239–259.
J. Prüss, Evolutionary Integral Equations and Applications. Birkhäuser, Basel, Boston, Berlin (1993).
H. Qi, M. Xu, Some unsteady unidirectional flows of a generalized Oldroyd-B fluid with fractional derivative. Appl. Math. Model. 33 (2009), 4184–4191.
H. Qi, X. Guo, Transient fractional heat conduction with generalized Cattaneo model. Int. J. Heat Mass Transfer. 76 (2014), 535–539.
H. Qi, H. Xu, X. Guo, The Cattaneo-type time fractional heat conduction equation for laser heating. Comput. Math. Appl. 66 (2013), 824–831.
S. Rogosin, F. Mainardi, George William Scott Blair–the pioneer of factional calculus in rheology. Commun. Appl. Ind. Math. 6, No 1 (2014), e-481; DOI: 10.1685/journal.caim.481.
Y.A. Rossikhin, M.V. Shitikova, Analysis of rheological equations involving more than one fractional parameter by the use of the simplest mechanical systems based on these equations. Mech. Time-Depend. Mat. 5 (2001), 131–175.
Y.A. Rossikhin, M.V. Shitikova, Analysis of the viscoelastic rod dynamics via models involving fractional derivatives or operators of two different orders. Shock Vib. Digest 36, No 1 (2004), 3–26.
Y.A. Rossikhin, M.V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Appl. Mech. Rev. 63 (2010), Art. # 010801-1-25.
K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusionwave equations and applications to some inverse problems. J. Math. Anal. Apl. 382 (2012), 426–447.
T. Sandev, A. Chechkin, N. Korabel, H. Kantz, I.M. Sokolov, R. Metzler, Distributed-order diffusion equations and multifractality: Models and solutions. Phys. Rev. E 92 (2015) Art. # 042117; DOI:10.1103/PhysRevE.92.042117.
T. Sandev, I.M. Sokolov, R. Metzler, A. Chechkin, Beyond monofractional kinetics. Chaos Soliton. Fact. 102 (2017), 210–217.
T. Sandev, R. Metzler, A. Chechkin, From continuous time random walks to the generalized diffusion equation. Fract. Calc. Appl. Anal. 21, No 1 (2018), 10–28; DOI: 10.1515/fca-2018-0002; https://www.degruyter.com/view/j/fca.2018.21.issue-1/issue-files/fca.2018.21.issue-1.xml.
W.R. Schneider, W. Wyss, Fractional diffusion and wave equations. J. Math. Phys. 30 (1989), 134–144.
H. Schiessel, R. Metzler, A. Blumen, T.F. Nonnenmacher, Generalized viscoelastic models: Their fractional equations with applications. J. Phys. A 28 (1995), 6567–6584.
R. Schilling, R. Song, Z. Vondraček, Bernstein Functions: Theory and Applications. De Gruyter, Berlin (2010).
D. Song, T. Jiang, Study on the constitutive equation with fractional derivative for the viscoelastic fluids - Modified Jeffreys model and its application. Rheol. Acta 37 (1998), 512–517.
N. Su, P.N. Nelson, S. Connor, The distributed-order fractional diffusion-wave equation of groundwater flow: Theory and application to pumping and slug tests. J. Hydrol. 529, No 3 (2015), 1262–1273.
W. Tan, W. Pan, M. Xu, A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates. Int. J. Non Linear Mech. 38 (2003), 645–650.
W. Tan, M. Xu, Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model. Acta Mech. Sin. 18 (2002), 342–349.
Ž Tomovski, T. Sandev, Effects of a fractional friction with power-law memory kernel on string vibrations. Comput. Math. Appl. 62 (2011), 1554–1561.
V. Vergara, R. Zacher, Optimal decay estimates for time-fractional and other non-local subdiffusion equations via energy methods. SIAM J. Math. Anal. 47, No 1 (2015), 210–239.
D. Yang, K. Zhu, Start-up flow of a viscoelastic fluid in a pipe with a fractional Maxwell’s model. Comput. Math. Appl. 60 (2010), 2231–2238.
P. Yang, K. Zhu, Thermodynamic compatibility and mechanical analogue of the generalized Jeffreys and generalized Oldroyd-B fluids with fractional derivatives. Sci. China - Phys. Mech. Astron. 54 (2011), 737–742.
Y. Yin, K. Zhu, Oscillating flow of a viscoelastic fluid in a pipe with the fractional Maxwell model. Appl. Math. Comput. 173 (2006), 231–242.
C. Zhao, C. Yang, Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular micro-channels. Appl. Math. Comput. 211, No 2 (2009), 502–509.
L. Zheng, Z. Guo, X. Zhang, 3D flow of a generalized Oldroyd-B fluid induced by a constant pressure gradient between two side walls perpendicular to a plate. Nonlinear Anal. RWA 12 (2011), 3499–3508.
L. Zheng, X. Zhang, Modeling and Analysis of Modern Fluid Problems. Academic Press, Cambridge, MA, USA (2017).
Y. Zhou, J.R. Wang, L. Zhang, Basic Theory of Fractional Differential Equations. World Sci. Publ., London (2016).
D. Zorica, S. Cvetićanin, Fractional telegrapher’s equation as a consequence of Cattaneo’s heat conduction law generalization. Theoretical and Applied Mechanics 45, No 1 (2018), 35–51.
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Emilia, B. Subordination in a Class of Generalized Time-Fractional Diffusion-Wave Equations. FCAA 21, 869–900 (2018). https://doi.org/10.1515/fca-2018-0048
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1515/fca-2018-0048