Skip to main content
Log in

Mittag-Leffler function and fractional differential equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We adopt a procedure of operational-umbral type to solve the (1 + 1)-dimensional fractional Fokker-Planck equation in which time fractional derivative of order α (0 < α < 1) is in the Riemann-Liouville sense. The technique we propose merges well documented operational methods to solve ordinary FP equation and a redefinition of the time by means of an umbral operator. We show that the proposed method allows significant progress including the handling of operator ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.T. Ali, K. Górska, A. Horzela, F.H. Szafraniec, Squeezed States and Hermite polynomials in a complex variable. J. Math. Phys. 55 (2014), Art. # 012107 (11 pp).

  2. D. Babusci, G. Dattoli, K. Górska, K.A. Penson, Lacunary generating functions for the Laguerre polynomials. Séminaire Lotharingien de Combinatoire 76 (2017), Art.# B76b (19 pp).

  3. P. Blasiak, A. Horzela, K.A. Penson, G.H.E. Duchamp, A.I. Solomon, Boson normal ordering via substitutions and Sheffer-type polynomials. Phys. Lett. A 338, No 2 (2005), 108–116.

    Article  MathSciNet  Google Scholar 

  4. E. Capelas de Oliveira, F. Mainardi, J. Vaz Jr., Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics. Eur. Phys. J. Special Topics 193 (2011), 161–171.

    Article  Google Scholar 

  5. F. Ciocci, G. Dattoli, A. Torre, A. Renieri. Insertion Devises for Synchrotron Radiation and Free Electron Laser. World Scientific, Singapore (2000).

    Book  Google Scholar 

  6. G. Dattoli, Operational methods, fractional operators and special polynomials. Appl. Math. Comput. 141 (2003), 151–159.

    MathSciNet  MATH  Google Scholar 

  7. G. Dattoli, J.C. Gallardo, A. Torre, An algebraic view to the operatorial ordering and its applications to optics. Riv. Nuovo Cim. 11, No 11 (1988), 1–79.

    Article  MathSciNet  Google Scholar 

  8. G. Dattoli, B. Germano, P.E. Ricci, Comments on monomiality, ordinary polynomials and associated bi-orthogonal functions. Appl. Math. Comput. 154 (2004), 219–227.

    MathSciNet  MATH  Google Scholar 

  9. G. Dattoli, K. Górska, A. Horzela, S. Licciardi, R.M. Pidatella, Comments on the properties of Mittag-Leffler function. arXiv: 1707.01135 (2017).

    Google Scholar 

  10. G. Dattoli, S. Khan, P.E. Ricci, On Crofton-Glaisher type relations and derivation of generating functions for Hermite polynomials including the multi-index case. Integr. Transf. Spec. Fun. 19, No 1 (2008), 1–9.

    Article  MathSciNet  Google Scholar 

  11. G. Dattoli, S. Licciardi and R.M. Pidatella, Theory of generalized trigonometric functions: from Laguerre to Airy forms. arXiv:1702.08520v1 (2017).

    Google Scholar 

  12. G. Dattoli, P.L. Ottaviviani, A. Torre, L. Vázquez, Evolution operator equations: integration with algebraic and finite-difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory. Riv. Nuovo Cim. 20, No 2 (1997), 1–133.

    Article  MathSciNet  Google Scholar 

  13. G. Dattoli, H.M. Srivastava, K.V. Zhukovsky, A new family of integral transforms and their applications. Integr. Transf. Spec. Fun. 17, No 1 (2006), 31–37.

    Article  MathSciNet  Google Scholar 

  14. M.M. Dzherbashyan, Integral Transforms and Representations of Functions in Complex Domain (in Russian). Nauka, Moscow (1966).

    Google Scholar 

  15. R. Garrappa, M. Popolizio, Evaluation of generalized Mittag-Leffler functions on the real line. Adv. Comput. Math. 39 (2013), 205–225.

    Article  MathSciNet  Google Scholar 

  16. I.M. Gessel, P. Jayawant, A triple lacunary generating function for Hermite polynomials. Electron. J. Comb. 12, No 1 (2005), R30 (14pp).

    Google Scholar 

  17. R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin. Mittag-Leffler functions. Related Topics and Applications. Springer-Verlag, Berlin (2014).

    Book  Google Scholar 

  18. R. Gorenflo, F. Mainardi, Fractional calculus and stable probability distributions. Archives of Mechanics 50, No 30 (1998), 377–388.

    MathSciNet  MATH  Google Scholar 

  19. K. Górska, A. Horzela, K.A. Penson, G. Dattoli, The higher-order heattype equations via signed Lévy stable and generalized Airy functions. J. Phys. A: Math. Theor. 46 (2013), # 425001 (16pp).

  20. K. Górska, A. Horzela, K.A. Penson, G. Dattoli, G.H.E. Duchamp, The stretched exponential behavior and its underlying dynamics. The phenomenological approach. Fract. Calc. Appl. Anal. 20, No 1 (2017), 260–283; DOi: 10.1515/fca-2017-0014; https://www.degruyter.com/view/j/fca.2017.20.issue-1/issue-files/fca.2017.20.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  21. K. Górska, K.A. Penson, D. Babusci, G. Dattoli, G.H.E. Duchamp, Operator solutions for fractional Fokker-Planck equations. Phys. Rev. E 85 (2012), # 031138 (4 pp).

  22. I.S. Gradhteyn, I.M. Ryzhik. Table of Integrals, Series and Products. 7th Ed., Academic Press (2007).

    Google Scholar 

  23. T. Haimo, C. Market, A representation theory for solutions of a higher order heat equation, I. J. Math. Anal. Appl. 168 (1992), 89–107.

    Article  MathSciNet  Google Scholar 

  24. H.J. Haubold, A.M. Mathai, R.K. Saxena, Mittag -Leffler functions and their applications. J. Appl. Math. 2011 (2011), Article ID 298628 (51 pp).

  25. K.A. Penson, P. Blasiak, G.H.E. Duchamp, A. Horzela, A.I. Solomon, On certain non-unique solutions of the Stieltjes moment problem. Dis- crete. Math. Theor. Comp. Sci. 12, No 2 (2010), 295–306.

    MathSciNet  MATH  Google Scholar 

  26. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo. Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  27. Y. Luchko, Initial -boundary-value problems for the one-dimensional time-fractional diffusion equation. Frac. Calc. Appl. Anal. 15, No 1 (2012), 141–160; DOi: 10.2478/s13540-012-0010-7; https://www.degruyter.com/view/j/fca.2012.15.issue-1/issue-files/fca.2012.15.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  28. Y. Luchko, F. Mainardi, Some properties of the fundamental solution to the signalling problem for the fractional diffusion-wave equation. Centr. Eur. J. Phys 11 (2013), 666–675.

    Google Scholar 

  29. M. Magdziarz, A. Weron, K. Weron, Fractional Fokker-Planck dynamics: Stochastic representation and computer simulation. Phys. Rev. E 75 (2007), # 016708 (6 pp).

  30. M. Magdziarz, T. Zorawik, Stochastic representation of a fractional subdiffusion equation. The case of infinitely divisible waiting times, Lévy noise and space-time-dependent coefficients. Proc. Amer. Math. Soc. 144 (2016), 1767–1778.

    Article  MathSciNet  Google Scholar 

  31. F. Mainardi, R. Garrappa, On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics. J. Comput. Phys. 293 (2015), 70–80.

    Article  MathSciNet  Google Scholar 

  32. F. Mainardi, P. Paradisi, R. Gorenflo, Probability distributions generated by fractional diffusion equations. arXiv:0704.0320 (2007).

    Google Scholar 

  33. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, No 1 (2000), 1–77.

    Article  MathSciNet  Google Scholar 

  34. I. Podlubny. Fractional Differential Equations. Ser. Mathematics and Science and Engineering, Vol. 198, Academic Press, San Diego (1999).

    MATH  Google Scholar 

  35. K.A. Penson and K. Górska, Exact and explicit probability densities for one-sided Lévy stable distributions. Phys. Rev. Lett. 105 (2010), # 210604 (4 pp).

  36. K.A. Penson, K. Górska, On the properties of Laplace transform originating from one-sided Lévy stable laws. J. Phys. A: Math. Theor. 49 (2016), # 065201 (10 pp).

  37. H. Pollard, The representation o. exλ as a Laplace integral. Bull. Amer. Math. Soc. 52 (1946), 908–910.

    Article  MathSciNet  Google Scholar 

  38. Y. Povstenko, T. Kyrylych, Two approaches to obtaining the space-time fractional advection-diffusion equation. Entropy 19 (2017), Art. # 297 (19 pp).

  39. A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev. Integrals and Series. Vol. 1. Elementary Functions. Gordon and Breach, Amsterdam (1998).

    MATH  Google Scholar 

  40. A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev. Integrals and Series. Vol. 2. Special Functions. Gordon and Breach, Amsterdam (1998).

    MATH  Google Scholar 

  41. A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev. Integrals and Series, Vol. 3: More Special Functions. Gordon and Breach, Amsterdam (2003).

    MATH  Google Scholar 

  42. S. Roman. The Umbral Calculus. Dover Publications Inc., New York (1984).

    MATH  Google Scholar 

  43. P.C. Rosenbloom, D.V. Widder, Expansions in terms of heat polynmials and associated functions. Trans. Amer. Math. Soc. 92 (1959), 220–266.

    Article  MathSciNet  Google Scholar 

  44. G.-C. Rota, D. Kahaner, A. Odlyzko, On the foundations of combinatorial theory. VIII. Finite operator calculus. J. Math. Anal. Appl. 42 (1973), 684–760.

    Article  MathSciNet  Google Scholar 

  45. R. Sack, Taylor’ s theorem for shift operators. Philos. Mag. 3 (1958), 497–503.

    Article  MathSciNet  Google Scholar 

  46. T. Sandev, A. Iomin, H. Kantz, R. Metzler, A. Chechkin, Comb model with slow and ultraslow diffusion. Math. Model. Nat. Phenom. 11, No 3 (2016), 18–33.

    Article  MathSciNet  Google Scholar 

  47. I.N. Sneddon, The Use of Integral Transforms. TATA McGraw-Hill Publishing Company, Dew Delhi (1974).

    MATH  Google Scholar 

  48. I.M. Sokolov, J. Klafter, Field-induces dispersion in subdiffusion. Phys. Rev. Lett. 97 (2006), 140602 (4 pp).

  49. V. Strehl, Lacunary Laguerre series from a combinatorial perspective. Sém. Lotharingien de Combinatoire 76 (2017), Art. # B76c (39 pp).

  50. K. Weron, M. Kotulski, On the Cole-Cole relaxation function and related Mittag-Leffler distribution. Physica A 232, No 1-2 (1996), 180–188.

    Article  Google Scholar 

  51. D. Widder. The Heat Equation. Academic Press, New York (1975).

    MATH  Google Scholar 

  52. Y. Zhou. Basic Theory of Fractional Differential Equations. World Scientific, New Jersey (2014).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Górska.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Górska, K., Lattanzi, A. & Dattoli, G. Mittag-Leffler function and fractional differential equations. FCAA 21, 220–236 (2018). https://doi.org/10.1515/fca-2018-0014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0014

MSC 2010

Key Words and Phrases

Navigation