Skip to main content
Log in

Time-space fractional derivative models for CO2 transport in heterogeneous media

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This study is mainly to explore gas transport process in heterogeneous media, which is to lay the foundation for oil-gas exploitation and development. Anomalous transport is observed to be ubiquitous in complex geological formations and has a paramount impact on petroleum engineering. Simultaneously, the random motion of particles usually exhibits obvious path- and history- dependent behaviors. This paper investigates the time-space fractional derivative models as a potential explanation for the time memory of long waiting time and the space non-locality of large regional-scale. A one-dimensional fractional advection-dispersion equation (FADE) based on fractional Fick’s law is firstly used to accurately describe the transport of Carbon dioxide (CO2) in complex media. The new fractional Darcy-advection-dispersion equation (FDADE) model has subsequently been proposed to make a comparison with FADE model and demonstrate its physical mechanism. Finally, the priori estimation of the parameters (fractional derivative index) in fractional derivative models and corresponding physical explanation are presented. Combined with experimental data, the numerical simulations show the fractional derivative models can well characterize the heavy-tailed and early breakthrough phenomenon of CO2 transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.E. Adams, L.W. Gelhar, Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis. Water Resour. Res. 28, No 12 (1992), 3325–3336.

    Article  Google Scholar 

  2. I. Ali, N.A. Malik, B. Chanane, Time -fractional nonlinear gas transport equation in tight porous media: An application in unconventional gas reservoirs. In. International Conference on Fractional Differentiation and ITS Applications. Catania, ITALY, (2014), 1–6.

    Google Scholar 

  3. I. Ali, B. Chanane, R.A. Ghanam, K. Sepehrnoori, N.A. Malik, Fractional transport models for shale gas in tight porous media. In. International Conference on Porous Media and ITS Applications in Science and Engineering ICPM. Waikoloa, Hawaii (2016).

    Google Scholar 

  4. V. Alvarado, E. Manrique, Enhanced oil recovery: An update review. Energies 3, No 9 (2010), 1529–1575.

    Article  Google Scholar 

  5. R.J. Blackwell, Laboratory studies of microscopic dispersion phenomena. Spe. J. 2, No 1 (1962), 1–8.

    MathSciNet  Google Scholar 

  6. A. Chang, H.G. Sun, C. Zheng, B. Lu, C. Lu, R. Ma, Y. Zhang, A time fractional convection-diffusion equation to model gas transport through heterogeneous soil and gas reservoirs. Under review.

  7. H. Chen, H. Wang, Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation. J. Comput. Appl. Math. 296 (2015), 480–498.

    Article  MathSciNet  Google Scholar 

  8. D. Delcastillonegrete, B.A. Carreras, V.E. Lynch, Front dynamics in reaction-diffusion systems with Levy flights: a fractional diffusion approach. Phys. Rev. Lett. 91, No 1 (2003), # 018302.

    Google Scholar 

  9. M. Escrochi, N. Mehranbod, S. Ayatollahi, The gas-oil interfacial behavior during gas injection into an asphaltenic oil reservoir. J. Chem. Eng. Data 58, No 9 (2013), 2513–2526.

    Article  Google Scholar 

  10. R. Garra, E. Salusti, Application of the nonlocal Darcy law to the propagation of nonlinear thermoelastic waves in fluid saturated porous media. Physica D 250, No 5 (2013), 52–57.

    Article  MathSciNet  Google Scholar 

  11. B.A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 195, No 4 (1990), 127–293.

    MathSciNet  Google Scholar 

  12. R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Discrete random walk models for space-time fractional diffusion. Chem. Phys. 284, No 1-2 (2002), 521–541.

    Article  Google Scholar 

  13. M.G. Herrick, D.A. Benson, M.M. Meerschaert, K.R. Mccall, Hydraulic conductivity, velocity, and the order of the fractional dispersion derivative in a highly heterogeneous system. Water Resour. Res. 38, No 11 (2002), 1227–1239.

    Article  Google Scholar 

  14. A. Honari, T.J. Hughes, E.O. Fridjonsson, M.L. Johns, E.F. May, Dispersion of supercritical CO2 and CH4 in consolidated porous media for enhanced gas recovery simulations. Int. J. Greenh. Gas Con. 19 (2013), 234–242.

    Article  Google Scholar 

  15. A. Honari, B. Bijeljic, M.L. Johns, E.F. May, Enhanced gas recovery with CO2 sequestration: The effect of medium heterogeneity on the dispersion of supercritical CO2-CH4. Int. J. Greenh. Gas Con. 39 (2015), 39–50.

    Article  Google Scholar 

  16. A. Honari, M. Zecca, S.J. Vogt, S. Iglauer, B. Bijeljic, M.L. Johns, E.F. May, The impact of residual water on CH4-CO2 dispersion in consolidated rock cores. Int. J. Greenh. Gas Con. 50 (2016), 100–111.

    Article  Google Scholar 

  17. E. Jack, R. Stuart, Identification of large-scale hydraulic conductivity trends and influence of trends on contaminant transport. Water Resour. Res. 34, No 9 (1998), 2155–2168.

    Article  Google Scholar 

  18. V. Kiryakova, A brief story about the operators of the generalized fractional calculus. Fract. Calc. Appl. Anal. 11, No 2 (2008), 203–220; at; http://www.math.bas.bg/complan/fcaa.

    MathSciNet  MATH  Google Scholar 

  19. Y. Luchko, Initial -boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 15, No 1 (2012), 141–160; DOi: 10.2478/s13540-012-0010-7; https://www.degruyter.com/view/j/fca.2012.15.issue-1/issue-files/fca.2012.15.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  20. E.J. Manrique, V.E. Muci, M.E. Gurfinkel, EOR field experiences in carbonate reservoirs in the United States. SPE Reserv. Eval. Eng. 10, No 2 (2007), 667–686.

    Article  Google Scholar 

  21. F.S.J. Martinez, Y.A. Pachepsky, W.J. Rawls, Modelling solute transport in soil columns using advective-dispersive equations with fractional spatial derivatives. Adv. Eng. Softw. 41, No 1 (2010), 4–8.

    Article  Google Scholar 

  22. G. Moritis, EOR continues to unlock oil resources. Oil Gas J. 102, No 14 (2004), 45–65.

    Google Scholar 

  23. T.K. Perkins, O.C. Johnston, A review of diffusion and dispersion in porous media. SPE J. 3, No 3 (1963), 70–84.

    Google Scholar 

  24. J.G. Seo, Experimental and simulation studies of sequestration of supercritical carbon dioxide in depleted gas reservoirs. J. Energy Resour. Technol. 127, No 1 (2005), 1–6.

    Article  Google Scholar 

  25. R. Stern, F. Effenberger, H. Fichtner, T. Schäfer, The space-fractional diffusion-advection equation: Analytical solutions and critical assessment of numerical solutions. Fract. Calc. Appl. Anal. 17, No 1 (2014), 171–190; DOi: 10.2478/s13540-014-0161-9; https://www.degruyter.com/view/j/fca.2014.17.issue-1/issue-files/fca.2014.17.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  26. H.G. Sun, W. Chen, C. Li, Y. Chen, Fractional differential models for anomalous diffusion. Physica A 389, No 14 (2010), 2719–2724.

    Article  Google Scholar 

  27. S. Thomas, Enhanced oil recovery-An overview. Oil Gas Sci. Technol. 63, No 2 (2007), 9–19.

    Google Scholar 

  28. T.A. Torp, J. Gale, Demonstrating storage of CO2 in geological reservoirs: The Sleipner and SACS projects. Energy 29, No 29 (2004), 1361–1369.

    Article  Google Scholar 

  29. Y. Wang, Anomalous transport in weakly heterogeneous geological porous media. Phys. Rev. E. Stat. Phys. Plasmas. Fluids Relat. Interdiscip. Topics 87, No 3 (2013), 1191–1206.

    Google Scholar 

  30. Q. Xu, X. Liu, Z. Yang, J. Wang, The model and algorithm of a new numerical simulation software for low permeability reservoirs. J. Petrol. Sci. Eng. 78, No 2 (2011), 239–242.

    Article  Google Scholar 

  31. C. Yang, Y. Gu, New experimental method for measuring gas diffusivity in heavy oil by the dynamic pendant drop volume analysis (DPDVA). Ind. Eng. Chem. Res. 44, No 12 (2005), 4474–4483.

    Article  Google Scholar 

  32. D. Yin, W. Zhang, C. Cheng, Y. Li, Fractional time-dependent Bingham model for muddy clay. J. Non-Newton. Fluid 187, (2012), 32–35.

    Article  Google Scholar 

  33. D. Yin, Y. Li, D. Zhao, Utilization of produced gas of CO2 flooding to improve oil recovery. J. Energy Inst. 87, No 4 (2014), 289–296.

    Article  Google Scholar 

  34. Y. Zhang, D.A. Benson, M.M. Meerschaert, H.-P. Scheffler, On using random walks to solve the space-fractional advection-dispersion equations. J. Stat. Phys. 123, No 1 (2006), 89–110.

    Article  MathSciNet  Google Scholar 

  35. Y. Zhang, D.A. Benson, M.M. Meerschaert, E.M. Labolle, Space -fractional advection-dispersion equations with variable parameters: Diverse formulas, numerical solutions, and application to the macrodispersion experiment site data. Water Resour. Res. 43, No 5 (2007), 325–327.

    Article  Google Scholar 

  36. Y. Zhang, D.A. Benson, D.M. Reeves, Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications. Adv. Water Resour. 32, No 4 (2009), 561–581.

    Article  Google Scholar 

  37. Y. Zhao, J. Chen, M. Yang, Y. Liu, Y. Song, A rapid method for the measurement and estimation of CO2 diffusivity in liquid hydrocarbon-saturated porous media using MRI. Magn. Reson. Imaging 34, No 4 (2016), 437–441.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AiLian Chang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, A., Sun, H. Time-space fractional derivative models for CO2 transport in heterogeneous media. FCAA 21, 151–173 (2018). https://doi.org/10.1515/fca-2018-0010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0010

MSC 2010

Key Words and Phrases

Navigation