Skip to main content
Log in

Time-fractional diffusion with mass absorption under harmonic impact

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Time-fractional diffusion equation with mass absorption and the harmonic source term is studied under zero initial conditions. The Caputo derivative of the order 0 < α ≤ 2 is used. Different formulation of the problem for integer values α = 1 and α = 2 are discussed. The integral transform technique is used. The results of numerical calculations are illustrated graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Abad, S.B. Yuste, K. Lindenberg, Survival probability of an immobile target in a sea of evanescent diffusive or subdiffusive traps: A fractional equation approach. Phys. Rev. E 86 (2012), # 061120.

  2. M. Abramowitz, I.A. Stegun (Eds.). Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1972).

    MATH  Google Scholar 

  3. E. Abuteen, A. Freihat, M. Al-Smadi, H. Khalil, R.A. Khan, Approximate series solution of nonlinear, fractional Klein-Gordon equations using fractional reduced differential transform method. J. Math. Stat. 12, No 1 (2016), 23–33.

    Article  Google Scholar 

  4. H.S. Carslaw, J.C. Jaeger. Conduction of Heat in Solids, 2nd Ed. Oxford University Press, Oxford (1959).

    MATH  Google Scholar 

  5. J. Crank. The Mathematics of Diffusion, 2nd ed. Clarendon Press, Oxford (1975).

    MATH  Google Scholar 

  6. R.S. Damor, S. Kumar, A.K. Shukla, Solution of fractional bioheat equation in terms of Fox’H-Function. SpringerPlus 5 (2016), # 111, 1–10; DOi: 10.1186/s40064-016-1743-2.

    Article  Google Scholar 

  7. A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi. Tables of Integral Transforms, Vol. 1. McGraw-Hill, New York (1954).

    MATH  Google Scholar 

  8. L.L. Ferrás, N.J. Ford, M.L. Morgado, J.M. Nóbrega, M.S. Rebelo, Fractional Pennes’ bioheat equation: theoretical and numerical studies. Fract. Calc. Appl. Anal. 18, No 4 (2015), 1080–1106; DOi: 10.1515/fca-2015-0062; https://www.degruyter.com/view/j/fca.2015.18.issue-4/issue-files/fca.2015.18.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  9. F. Gabbiani, S.J. Cox. Mathematics for Neuroscientists, 2nd Ed. Academic Press, Amsterdam (2017).

    MATH  Google Scholar 

  10. V.V. Gafiychuk, I.A. Lubashevsky. Mathematical Description of Heat Transfer in Living Tissue. VNTL Publishers, Lviv (1999).

    MATH  Google Scholar 

  11. A.K. Golmankhaneh, A.K. Golmankhaneh, D. Baleanu, On nolinear fractional Klein-Gordon equation. Signal Process. 91, No 3 (2011), 446–451.

    Article  Google Scholar 

  12. R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order. In. Fractals and Fractional Calculus in, Continuum Mechanics, Springer, Wien (1997), 223–276.

    Chapter  Google Scholar 

  13. A.E. Green, P.M. Naghdi, Thermoelasticity without energy dissipation. J. Elast. 31, No 3 (1993), 189–208.

    Article  MathSciNet  Google Scholar 

  14. H. Kheiri, S. Shahi, A. Mojaver, Analytical solutions for the fractional Klein-Gordon equation. Comput. Meth. Diff. Equat. 2, No 2 (2014), 99–114.

    MathSciNet  MATH  Google Scholar 

  15. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo. Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  16. S.M. Korogod, S. Tyč-Dumont. Electrical Dynamics of the Dendritic Space. Cambridge University Press, Cambridge (2009).

    Book  Google Scholar 

  17. A. Lakhssassi, E. Kengne, H. Semmaoui, Modified Pennes’ equation modelling bio-heat transfer in living tissues: analytical and numerical analysis. Nat. Sci. 2, No 12 (2010), 1375–1385.

    Google Scholar 

  18. F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9, No 6 (1996), 23–28.

    Article  MathSciNet  Google Scholar 

  19. F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos. Solitons Fractals 7, No 9 (1996), 1461–1477.

    Article  MathSciNet  Google Scholar 

  20. R.R. Nigmatullin, To the theoretical explanation of the “universal response”. Phys. Stat. Sol. (b) 123, No 2 (1984), 739–745.

    Article  Google Scholar 

  21. W. Nowacki, State of stress in an elastic space due to a source of heat varying harmonically as function of time. Bull. Acad. Polon. Sci. Sér. Sci. Techn. 5 (1957), 145–154.

    Google Scholar 

  22. H.H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1, No 2 (1948), 93–122.

    Article  Google Scholar 

  23. I. Podlubny. Fractional differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  24. A.D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman & Hall/CRC, Boca Raton (2002).

    MATH  Google Scholar 

  25. Y. Povstenko, Fractional heat conduction equation and associated thermal stresses. J. Thermal Stresses 28, No 1 (2005), 83–102.

    Article  MathSciNet  Google Scholar 

  26. Y. Povstenko, Non -axisymmetric solutions to time-fractional diffusion-wave equation in an infinite cylinder. Fract. Calc. Appl. Anal. 14, No 3 (2011), 418–435; DOi: 10.2478/s13540-011-0026-4.

    Article  MathSciNet  Google Scholar 

  27. Y. Povstenko. Fractional Thermoelasticity. Springer, New York (2015).

    Book  Google Scholar 

  28. Y. Povstenko. Linear Fractional Diffusion-Wave Equation for Scientists and Engineers. Birkhäuser, New York (2015).

    Book  Google Scholar 

  29. Y. Povstenko, Fractional heat conduction in a space with a source varying harmonically in time and associated thermal stresses. J. Thermal Stresses 39, No 11 (2016), 1442–1450.

    Article  Google Scholar 

  30. A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev. Integrals and Series, Vol 1: Elementary Functions, Gordon and Breach Science Publishers, Amsterdam (1986).

    MATH  Google Scholar 

  31. Y. Qin, K. Wu, Numerical solution of fractional bioheat equation by quadratic spline collocation method. J. Nonlinear Sci. Appl. 9, No 7 (2016), 5061–5072.

    Article  MathSciNet  Google Scholar 

  32. S.G. Samko, A.A. Kilbas, O.I. Marichev. Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Amsterdam (1993).

    MATH  Google Scholar 

  33. J. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simulat. 16, No 3 (2011), 1140–1153.

    Article  MathSciNet  Google Scholar 

  34. S. Vitali, G. Castellani, F. Mainardi, Time fractional cable equation and applications in neurophysiology. Chaos. Solitons Fractals 102 (2017) 467–472.

    Article  MathSciNet  Google Scholar 

  35. A.-M. Wazwaz, Partial Differential Equations and Solitary Waves Theory. Higher Education Press, Beijing; Springer, Berlin (2009).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Povstenko.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Povstenko, Y., Kyrylych, T. Time-fractional diffusion with mass absorption under harmonic impact. FCAA 21, 118–133 (2018). https://doi.org/10.1515/fca-2018-0008

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0008

MSC 2010

Key Words and Phrases

Navigation