Skip to main content
Log in

Diffusion entropy method for ultraslow diffusion using inverse Mittag-Leffler function

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This study analyzes the complexity of ultraslow diffusion process using both the classical Shannon entropy and its general case with inverse Mittag-Leffler function in conjunction with the structural derivative. To further describe the observation process with information loss in ultraslow diffusion, e.g., some defects in the observation process, two definitions of fractional entropy are proposed by using the inverse Mittag-Leffler function, in which the Pade approximation technique is employed to numerically estimate the diffusion entropy. The results reveal that the inverse Mittag-Leffler tail in the propagator of the ultraslow diffusion equation model adds more information to the original distribution with larger entropy. Smaller value of α in the inverse Mittag-Leffler function indicates more complicated of the underlying ultraslow diffusion and corresponds to higher value of entropy. The proposed definitions of fractional entropy can serve as candidates to capture the information loss in ultraslow diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.V. Brilliantov, T. Poschel. Kinetic Theory of Granular Gases. Oxford University Press, Oxford, 2004.

    Book  Google Scholar 

  2. W. Chen, Non -power-function metric: a generalized fractal. Math. Phys. (2017). Preprint at viXra:1612.0409; http://vixra.org/pdf/1612.0409v1.pdf.

    Google Scholar 

  3. W. Chen, Time -space fabric underlying anomalous diffusion. Chaos Soliton Fract. 28 (2006) 923–929.

  4. W. Chen, Y. Liang, X. Hei, Structural derivative based on inverse Mittag-Leffler function for modeling ultraslow diffusion. Fract. Calc. Appl. Anal. 19, No 5 (2016), 1250–1261; DOi: 10.1515/fca-2016-0064; https://www.degruyter.com/view/j/fca.2016.19.issue-5/issue-files/fca.2016.19.issue-5.xml

    Article  MathSciNet  Google Scholar 

  5. S.I. Denisov, Y.S. Bystrik, H. Kantz, Limiting distributions of continuous-time random walks with super heavy-tailed waiting times. Phys. Rev. E 87 (2013), Art. # 022117.

  6. S.I. Denisov, H. Kantz, Continuous -time random walk with a super heavy-tailed distribution of waiting times. Phys. Rev. E 83 (2011), Art. # 041132.

  7. S.I. Denisov, S.B. Yuste, Y.S. Bystrik, et al., Asymptotic solutions of decoupled continuous-time random walks with super heavy-tailed waiting time and heavy-tailed jump length distributions. Phys. Rev. E 84 (2011), Art. # 061143.

  8. J. Drager, J. Klafter, Strong anomaly in diffusion generated by iterated maps. Phys. Rev. Lett. 84 (2000), 5998–6001.

    Article  Google Scholar 

  9. C. Dumouchel, S. Grout, Application of the scale entropy diffusion model to describe a liquid atomization process. Int. J. Multiphase Flow 35 (2009), 952–962.

    Article  Google Scholar 

  10. I. Eliazar, J. Klafter, On the generation of anomalous and ultraslow diffusion. J. Phys-Math. Theor. 44 (2011), 2033–2039.

    MathSciNet  MATH  Google Scholar 

  11. R. Gorenflo, J. Loutchko, Y. Luchko, Computation of the Mittag-Leffler function and its derivatives. Fract. Calc. Appl. Anal. 5, No 1 (2002), 12–15.

    MathSciNet  MATH  Google Scholar 

  12. R. Hilfer, H.J. Seybold, Computation of the generalized Mittag-Leffler function and its inverse in the complex plane. Integr. Transf. Spec. F. 17 (2006), 637–652.

    Article  MathSciNet  Google Scholar 

  13. C. Ingo, T.R. Barrick, A.G. Webb, et al., Accurate Pade global approximations for the Mittag-Leffler function, its inverse, and its partial derivatives to efficiently compute convergent power series. Int. J. Appl. Comput. Mat. 3 (2017), 347–362.

    Article  Google Scholar 

  14. G. Jumarie, Derivation of an amplitude of information in the setting of a new family of fractional entropies. Inform. Sciences 216 (2012), 113–137.

    Article  MathSciNet  Google Scholar 

  15. G. Jumarie, Path probability of random fractional systems defined by white noises in coarse-grained time: Application of fractional entropy. Fract. Differ. Calc. 1, No 1 (2011), 45–87.

    Article  MathSciNet  Google Scholar 

  16. A.N. Kochubei, Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340 (2008), 252–281.

    Article  MathSciNet  Google Scholar 

  17. Y. Liang, W. Chen, A non-local structural derivative model for characterization of ultraslow diffusion in dense colloids. Commun. Nonlinear Sci. 56 (2018), 131–137.

    Article  MathSciNet  Google Scholar 

  18. Y. Liang, W. Chen, B.S. Akpa, et al., Using spectral and cumulative spectral entropy to classify anomalous diffusion in Sephadex gels. Comput. Math. Appl. 73 (2017), 765–774.

    Article  MathSciNet  Google Scholar 

  19. Y. Luchko, Entropy production rate of a one-dimensional alpha-fractional diffusion process. Axioms 5 (2016), 1–11.

    Article  MathSciNet  Google Scholar 

  20. R.L. Magin, C. Ingo, L. Colon-Perez, et al., Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy. Micropor. Mesopor. Mat. 178 (2013), 39–43.

    Article  Google Scholar 

  21. S. Marano, M. Franceschetti, Ray propagation in a random lattice: a maximum entropy, anomalous diffusion Process. IEEE T. Antenn. Propag. 53 (2005), 1888–1896.

    Article  Google Scholar 

  22. D.C. Mays, B. Faybishenko, S. Finsterle, Information entropy to measure temporal and spatial complexity of unsaturated flow in heterogeneous media. Water Resour. Res. 38 (2002), Art. # 1313.

  23. M.M. Meerschaert, E. Nane, P. Vellaisamy, Distributed -order fractional diffusions on bounded domains. J. Math. Anal. Appl. 379 (2011), 216–228.

    Article  MathSciNet  Google Scholar 

  24. R. Metzler, J. Klafter, The random walk¡¯s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1–77.

    Article  MathSciNet  Google Scholar 

  25. J. Prehl, C. Essex, K.H. Hoffmann, Tsallis relative entropy and anomalous diffusion. Entropy 4 (2012), 701–716.

    Article  Google Scholar 

  26. L.P. Sanders, M.A. Lomholt, L. Lizana, et al., Severe slowing-down and universality of the dynamics in disordered interacting many-body systems: ageing and ultraslow diffusion. New J. Phys. 16 (2014), Art. # 113050.

  27. N. Scafetta, P. Grigolini, Scaling detection in time series: diffusion entropy analysis. Phys. Rev. E 66 (2002), Art. # 036130.

  28. Y.G. Sinai, The limiting behavior of a one-dimensional random walk in a random medium. Theor. Probab. Appl. 27 (1983), 256–268.

    Article  Google Scholar 

  29. I.M. Sokolov, A.V. Chechkin, J. Klafter, Distributed -order fractional kinetics. Acta Phys. Pol. B 35 (2004), 1323–1341.

    Google Scholar 

  30. M. Sperl, Nearly logarithmic decay in the colloidal hard-sphere system. Phys. Rev. E 71 (2005), Art. # 060401.

  31. A. Vaknin, Z. Ovadyahu, M. Pollak, Aging effects in an Anderson insulator. Phys. Rev. Lett. 84 (2000), Art. # 3402.

  32. W. Xu, F. Wu, Y. Jiao, el al., A general micromechanical framework of effective moduli for the design of nonspherical nano- and micro-particle reinforced composites with interface properties. Mater. Design 127 (2017), 162–172.

    Article  Google Scholar 

  33. C. Zeng, Y.Q. Chen, Global Pade approximations of the generalized Mittag-Leffler function and its inverse. Fract. Calc. Appl. Anal. 18, No 6 (2015), 1492–1506; DOi: 10.1515/fca-2015-0086; https://www.degruyter.com/view/j/fca.2015.18.issue-6/issue-files/fca.2015.18.issue-6.xml

    Article  MathSciNet  Google Scholar 

  34. Y. Zhang, B. Baeumer, D. M. Reeves, A tempered multiscaling stable model to simulate transport in regional-scale fractured media. Geophys. Res. Lett. 37 (2010), Art. # L11405.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjie Liang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y. Diffusion entropy method for ultraslow diffusion using inverse Mittag-Leffler function. FCAA 21, 104–117 (2018). https://doi.org/10.1515/fca-2018-0007

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0007

MSC 2010

Key Words and Phrases

Navigation