Skip to main content

Advertisement

Log in

Properties of the Caputo-Fabrizio fractional derivative and its distributional settings

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The Caputo-Fabrizio fractional derivative is analyzed in classical and distributional settings. The integral inequalities needed for application in linear viscoelasticity are presented. They are obtained from the entropy inequality in a weak form. Moreover, integration by parts, an expansion formula, approximation formula and generalized variational principles of Hamilton’s type are given. Hamilton’s action integral in the first principle, do not coincide with the lower bound in the fractional integral, while in the second principle the minimization is performed with respect to a function from a specified space and the order of fractional derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Adams, J.J.F. Fournier. Sobolev Spaces. Elsevier, Oxford (2003).

    MATH  Google Scholar 

  2. O.P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272 (2002), 368–79.

    Article  MathSciNet  Google Scholar 

  3. T.M. Atanackovic, D. Dolicanin, S. Konjik, S. Pilipovic, Dissipativity and stability for a nonlinear differential equation with distributed order symmetrized fractional derivative. Appl. Math. Lett. 24 (2011), 1020–1025.

    Article  MathSciNet  Google Scholar 

  4. T.M. Atanackovic, B. Stankovic, On a numerical scheme for solving differential equations of fractional order. Mech. Res. Commun. 35 (2008), 429–438.

    Article  MathSciNet  Google Scholar 

  5. T.M. Atanackovic, M. Janev, S. Konjik, S. Pilipovic, D. Zorica, Expansion formula for fractional derivatives in variational problems. J. Math. Anal. Appl. 409 (2014), 911–924.

    Article  MathSciNet  Google Scholar 

  6. T.M. Atanackovic, S. Konjik, S. Pilipovic, Variational problems with fractional derivatives: Euler-Lagrange equations. J. Phys. A: Math. Theor. 41 (2008), ID # 095201.

  7. T.M. Atanackovic, Lj. Oparnica and S. Pilipovic, On a nonlinear distributed order fractional differential equation. J. Math. Anal. Appl. 328, (2007), 590–608.

    Article  MathSciNet  Google Scholar 

  8. T.M. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica. Fractional Calculus with Applications in Mechanics. ISTE, Hoboken (2014).

    Book  Google Scholar 

  9. T.M. Atanackovic, S. Konjik, S. Pilipovic, D. Zorica, Complex order fractional derivatives in viscoelasticity. Mech. Time-Depend. Mater. 20 (2016), 175–195.

    Article  Google Scholar 

  10. D. Baleanu, A. Mousalou, S. Rezapour, A new method for investigating approximate solutions of some fractional integro-differential equations involving the Caputo-Fabrizio derivative. Adv. Differ. Eq. 2017 (2017), 51–1–12.

    Article  MathSciNet  Google Scholar 

  11. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1 (2015), 73–85.

    Google Scholar 

  12. M. Caputo, M. Fabrizio, On the notion of fractional derivative and applicatios to the hysteresis phenomena. Mecc. 52, No 13 (2017), 3043–3052; DOi: 10.1007/s11012-017-0652-y.

    Article  Google Scholar 

  13. A. Coronel-Escamilla, J.F. Gomiz-Aguilar, D. Baleanu, R.F. Escobar-Jimémez, V.H. Olivares-Pregrino, A. Abundez-Pliego, Formulation of Euler-Lagrange and Hamilton equations involving fractional operators with regular kernel. Adv. Differ. Eq. 2016 (2016), 283, 17 pp.; DOi: 10.1186/s13662-016-1001-5.

    Article  MathSciNet  Google Scholar 

  14. K. Diethelm. The Analysis of Fractional Differential Equations. Springer, Berlin (2010).

    Book  Google Scholar 

  15. D. Dolicanin-Djekic, On a new class of constitutive equations for linear viscoelastic body. Fract. Calc. Appl. Anal. 20, No 2 (2017), 521–536; DOi: 10.1515/fca-2017-0027; https://www.degruyter.com/view/j/fca.2017.20.issue-2/issue-files/fca.2017.20.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  16. I.M. Gelfand, S.V. Fomin. Calculus of Variations. Dover, New York (2000).

    MATH  Google Scholar 

  17. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo. Theory and Applications of Fractional Differential Equations. Elesvier, Amsterdam (2006).

    MATH  Google Scholar 

  18. V. Kiryakova. Generalized Fractional Calculus and Applications. Pitman, Longman, Harlow & Wiley, New York (1994).

    MATH  Google Scholar 

  19. V. Kiryakova, The special functions of fractional calculus as generalized fractional calculus operators of some basic functions. Comput. Math. Appl. 59 (2010), 1128–1141.

    Article  MathSciNet  Google Scholar 

  20. A.N. Kochubei, General fractional calculus, evolution equations, and renewal processes. Integr. Equ. Oper. Theor. 71 (2011), 583–600.

    Article  MathSciNet  Google Scholar 

  21. J. Losada, J.J. Nieto, Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1 (2015), 87–92.

    Google Scholar 

  22. F. Mainardi. Fractional Calculus and Waves in Linear Viscoelasticity. An Introduction to Mathematical Models. Imperial College Press, London 2010.

    Book  Google Scholar 

  23. M. Reed, B. Simon. Methods of Modern Mathematical Physics, I: Functional Anaalysis. Academic Press, New York (1980).

    Google Scholar 

  24. I. Schäfer, S. Kempfle, B. Nolte, Linear fractional PDE, uniqueness of global solutions. Fract. Calc. Appl. Anal. 8, No 1 (2005), 53–62; at http://www.math.bas.bg/complan/fcaa.

    MathSciNet  MATH  Google Scholar 

  25. B. Stankovic, T.M. Atanackovic, On an inequality arising in fractional oscillator theory. Fract. Calc. Appl. Anal. 7, No 1 (2004), 11–20; at http://www.math.bas.bg/complan/fcaa.

    MathSciNet  MATH  Google Scholar 

  26. S. Umarov, S. Steinberg, Variable order differential equations with piecewise constant order-function and diffusion with changing modes. Zeitschrift für Analysis und iher Anwendungen 28 (2009), 431–450.

    Article  MathSciNet  Google Scholar 

  27. V.S. Vladimirov, Methods of the Theory of Generalized Functions. Taylor & Francis, London (2002).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodor M. Atanacković.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atanacković, T.M., Pilipović, S. & Zorica, D. Properties of the Caputo-Fabrizio fractional derivative and its distributional settings. FCAA 21, 29–44 (2018). https://doi.org/10.1515/fca-2018-0003

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0003

MSC 2010

Key Words and Phrases

Navigation