Skip to main content
Log in

Fractional Integral Operators Characterized by Some New Hypergeometric Summation Formulas

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The purpose of this paper is to study generalized fractional integral operators whose kernels involve a very special class of generalized hypergeometric functions r+2Fr+1. The importance of these operators stems from the summability of this special class of generalized hypergeometric functions at unit argument which is realized in the present paper by making use of the Karlsson-Minton type summation theorems. We obtain for these operators several results including the generalized fractional integrals of the H-function, certain mapping properties and their Mellin transforms. Applications to inequalities are also pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Bühring, Generalized hypergeometric functions at unit argument. Proc. Amer. Math. Soc. 114, No 1 (1992), 145–153.

    Article  MathSciNet  Google Scholar 

  2. P.L. Butzer, A.A. Kilbas, J.J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 269, No 1 (2002), 1–27.

    Article  MathSciNet  Google Scholar 

  3. P.L. Butzer, A.A. Kilbas, J.J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals. J. Math. Anal. Appl. 270, No 1 (2002), 1–15.

    Article  MathSciNet  Google Scholar 

  4. A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi, Higher Transcendental Functions, Vol. 1. McGraw-Hill, New York (1953).

    MATH  Google Scholar 

  5. S.P. Goyal, R.M. Jain, Fractional integral operators and the generalized hypergeometric functions. Indian J. Pure Appl. Math. 18, No 3 (1987), 251–259.

    MathSciNet  MATH  Google Scholar 

  6. S.P. Goyal, R.M. Jain, N. Gaur, Fractional integral operators involving a product of generalized hypergeometric functions and a general class of polynomials. Indian J. Pure Appl. Math. 22, No 5 (1991), 403–411.

    MathSciNet  MATH  Google Scholar 

  7. S.P. Goyal, R.M. Jain, N. Gaur, Fractional integral operators involving a product of generalized hypergeometric functions and a general class of polynomials II. Indian J. Pure Appl. Math. 23, No 2 (1992), 121–128.

    MathSciNet  MATH  Google Scholar 

  8. A.A. Kilbas, L. Rodríguez-Germá, M. Saigo, R.K. Saxena, J.J. Trujillo, The Krätzel function and evaluation of integrals. Comput. Math. Appl. 59, No 5 (2010), 1790–1800.

    Article  MathSciNet  Google Scholar 

  9. A.A. Kilbas, M. Saigo, H-Transforms: Theory and Application. Chapman & Hall/CRC Press, Boca Raton, FL, London (2004).

    Book  Google Scholar 

  10. V. Kiryakova, Generalized Fractional Calculus and Applications. Pitman Research Notes in Mathematics, Vol. 301, Longman & J. Wiley, Harlow - N. York (1994).

    MATH  Google Scholar 

  11. Y. Luchko, V. Kiryakova, The Mellin integral transform in fractional calculus. Fract. Calc. Appl. Anal. 16, No 2 (2013), 405–430; DOI: 10.2478/s13540-013-0025-8; https://www.degruyter.com/view/j/fca.2013.16.issue-2/issue-files/fca.2013.16.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  12. A.R. Miller, A summation formula for Clausen’s series 3F2(1) with an application to Goursat’s function 2F2(x). J. Phys. A 38 (2005), 3541–3545.

    Article  MathSciNet  Google Scholar 

  13. A.R. Miller, Certain summation and transformation formulas for generalized hypergeometric series. J. Comput. Appl. Math. 231, No 2 (2009), 964–972.

    Article  MathSciNet  Google Scholar 

  14. A.R. Miller, H.M. Srivastava, Karlsson-Minton summation theorems for the generalized hypergeometric series of unit argument. Integral Transforms Spec. Funct. 21, No 8 (2010), 603–612.

    Article  MathSciNet  Google Scholar 

  15. A.M. Miller, R.B. Paris, Certain transformations and summations for generalized hypergeometric series with integral parameter differences. Integral Transforms Spec. Funct. 22, No 1 (2011), 67–77.

    Article  MathSciNet  Google Scholar 

  16. A.M. Miller, R.B. Paris, Transformation formulas for the generalized hypergeometric function with integral parameter differences. Rocky Mountain J. Math. 43, No 1 (2013), 291–327.

    Article  MathSciNet  Google Scholar 

  17. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (Eds.), NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010).

    MATH  Google Scholar 

  18. M. Saigo, A remark on integral operators involving the Causs hypergeometric functions. Math. Rep. Kyushu Univ. 11 (1978), 135–143.

    Google Scholar 

  19. M. Saigo, A certain boundary value problem for the Euler-Darboux equation. Math. Japon. 24 (1979), 377–385.

    MathSciNet  MATH  Google Scholar 

  20. M. Saigo, A.A. Kilbas, Generalized fractional calculus of the H-function. Fukuoka Univ. Sci. Rep. 29 (1999), 31–45.

    MathSciNet  MATH  Google Scholar 

  21. M. Saigo, R.K. Saxena, J. Ram, Certain properties of operators of fractional integration associated with Mellin and Laplace transformations. In: Current Topics in Analytic Function Theory, World Scientific, Singapore (1992), 291–304.

    Chapter  Google Scholar 

  22. M. Saigo, R.K. Saxena, J. Ram, Applications of generalized fractional calculus operators in the solution of certain dual integral equations. Integral Transforms Spec. Funct. 1, No 3 (1993), 207–222.

    Article  MathSciNet  Google Scholar 

  23. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Sci. Publ., New York etc. (1993).

    MATH  Google Scholar 

  24. R.K. Saxena, J. Ram, J. Daiya, T.K. Pogány, Inequalities associated with Čebyšev functional for Saigo fractional integration operator. Integral Transforms Spec. Funct. 22, No 9 (2011), 671–680.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Jie Luo.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, MJ., Raina, R.K. Fractional Integral Operators Characterized by Some New Hypergeometric Summation Formulas. FCAA 20, 422–446 (2017). https://doi.org/10.1515/fca-2017-0022

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2017-0022

Keywords

Keywords

Navigation