Skip to main content
Log in

The Stretched Exponential Behavior and Its Underlying Dynamics. The Phenomenological Approach

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We show that the anomalous diffusion equations with a fractional spatial derivative in the Caputo or Riesz sense are strictly related to the special convolution properties of the Lévy stable distributions which stem from the evolution properties of stretched or compressed exponential function. The formal solutions of these fractional differential equations are found by using the evolution operator method where the evolution is conceived as integral transform whose kernel is the Green function. Exact and explicit examples of the solutions are reported and studied for various fractional order of derivatives and for different initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Adjanoh R. Belhi J. Vogel M. Ayadi K. Abdelmoula, Compressed exponential form for disordered domain wall motion in ultra-thin Au/Co/Au ferromagnetic films. J. Magn. Magn. Mater. 323 No 5 (2011), 504–508.

    Google Scholar 

  2. R.S Anderssen S.A Husain R.J Loy, The Kohlrausch function: properties and applications. ANZIAM J. 45 (2004), C800–C816

    MathSciNet  MATH  Google Scholar 

  3. C.A. Angell K.L Ngai G.B McKenna P.F McMillan S.W Martin, Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88 No 6 (2000), 3113–3157.

    Google Scholar 

  4. D. Bedeaux K. Lakatos-Lindenberg K.E Shuler, On the relation between master equations and random walks and their solutions. J. Math. Phys. 12 No 10 (1971), 2116–2123.

    MathSciNet  MATH  Google Scholar 

  5. H. Bergstròm, On some expansions of stable distribution functions. Arkiv für Matemati. 2 No 18 (1952), 375–378.

    MathSciNet  MATH  Google Scholar 

  6. J. Bredenbeck J. Helbing J.R Kumita G.A Woolley P. Hamm, α-Helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time-resolved IR spectroscopy. Proc. Natl. Acad. Sci. US. 102 No 7 (2005), 2379–2384.

    Google Scholar 

  7. Yu.A. Brychkov A.P Prudnikov, Integral Transforms of Generalized Functions Nauka, Moscow (1977), (in Russia)

    MATH  Google Scholar 

  8. F.W. Byron W. Fuller, Mathematics of Classical and Quantum Physics. 2, Dover Publications New York (1992)

  9. E. Capelas de Oliveira F. Mainardi J. Vaz Jr, Fractional models of anomalous relaxation based on the Kilbas and Saigo function. Meccanic. 49 No 9 (2014), 2049–2060.

    MathSciNet  MATH  Google Scholar 

  10. L. Cipelletti L. Ramos, Slow dynamics in glassy soft matter. J. Phys.: Condens. Matte. 17 No 6 (2005), R253–R285.

    Google Scholar 

  11. A. Compte, Stochastic foundations of fractional dynamics. Phys. Rev. E. 53 No 4 (1996), 4191–4193.

    Google Scholar 

  12. G. Dattoli K. Górska A. Horzela K.A Penson, Photoluminescence decay of silicon nanocrystals and Lévy stable distributions. Phys. Lett. 378 No 30-31 (2014), 2201–2205.

    MATH  Google Scholar 

  13. B. Dybiec E. Gudowska-Nowak I.M Sokolov, Transport in a Lévy ratchet: Group velocity and distribution spread. Phys. Rev. 78 (2008), Paper 011117 9.

    Google Scholar 

  14. B. Dybiec E. Gudowska-Nowak, Subordinated diffusion and continuous time random walk asymptotics. Chao. 20 No 4 (2010), Paper 043129 9.

    MathSciNet  MATH  Google Scholar 

  15. W. Feller, An Introduction to Probability Theory and Its Applications. 2, Wiley New York (1971.

  16. R. Garra A. Giusti F. Mainardi G. Pagnini, Fractional relaxation with time-varying coefficient. Fract. Calc. Appl. Anal. 17 No 2 (2014), 424–439DOI: 10.2478/s13540-014-0178-0https://www.degruyter.com/view/j/fca.2014.17.issue-2/issue-files/fca.2014.17.issue-2.xml

    MathSciNet  MATH  Google Scholar 

  17. R. Gorenflo F. Mainardi, Fractional calculus and stable probability distributions. Arch. Mech. 50 No 3 (1998), 377–388.

    MathSciNet  MATH  Google Scholar 

  18. K. Górska A. Horzela K.A Penson G. Dattoli, The higher-order heat-type equations via signed Lévy stable and generalized Airy functions. J. Phys. A: Math. Theor. 46 No 42 (2013), Paper 425001 16.

    MATH  Google Scholar 

  19. K. Górska K.A Penson, Lévy stable two-sided distributions: Exact and explicit densities for asymmetric case. Phys. Rev. 83 (2011), Paper 061125 4.

    Google Scholar 

  20. K. Górska K.A Penson, Lévy stable distributions via associated integral transform. J. Math. Phys. 53 No 5 (2012), Paper 053302 10.

    MATH  Google Scholar 

  21. K. Górska W.A. Woyczynśki, Explicit representations for multi-scale Lévy processes, and asymptotics of multifractal conservation laws. J. Math. Phys. 56 No 8 (2015), Paper 083511 19.

    MATH  Google Scholar 

  22. W. Gòtze L. Sjògren, Relaxation processes in supercooled liquids. Rep. Prog. Phys. 55 No 3 (1992), 241–376.

    Google Scholar 

  23. I.S. Gradshteyn I.M Ryzhik, Table of Integrals, Series, and Products 7th Ed A. Jeffrey D. Zwillinger Academic Press New York (2007.

  24. J.A Ihalainen J. Bredenbeck R. Pfister J. Helbing L. Chi I.H.M. van Stokkum G.A Woolley P. Hamm, Folding and unfolding of a photoswitchable peptide from picoseconds to microseconds. Proc. Natl. Acad. Sci. US. 104 No 13 (2007), 5383–5388.

    Google Scholar 

  25. V.M Kenkre E.W Montroll M.F Shlesinger, Generalized master equations for continuous-time random walks. J. Stat. Phys. 9 No 1 (1973), 45–50.

    Google Scholar 

  26. V. Kiryakova Y. Luchko, Riemann-Liouville and Caputo type multiple Erdélyi-Kober operators. Centr. Eur. J. Phys. 11 No 10 (2013), 1314–1336.

    Google Scholar 

  27. J. Klafter R. Silbey, Derivation of the continuous-time random-walk equation. Phys. Rev. Lett. 44 No 2 (1980), 55–58.

    Google Scholar 

  28. R. Kohlrausch, Theorie des elektrischen Rućkstandes in der Leidner Flasche. Pogg. Ann. Chem. 91 (1854), 179–214.

    Google Scholar 

  29. J.S Lew, On some relations between the Laplace and Mellin Transforms. IBM J. Res. Dev. 19 No 6 (1975), 582–586.

    MathSciNet  MATH  Google Scholar 

  30. M. Magdziarz K. Weron, Anomalous diffusion schemes underlying the stretched exponential relaxation. The role of subordinators. Acta Phys. Pol. 37 No 5 (2006), 1617–1625.

    Google Scholar 

  31. F. Mainardi Y. Luchko G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4 No 2 (2001), 153–192.

    MathSciNet  MATH  Google Scholar 

  32. F. Mainardi G. Pagnini R. Gorenflo, Mellin transform and subordination laws in fractional diffusion processes. Fract. Calc. Appl. Anal. 6 No 4 (2003), 441–459.

    MathSciNet  MATH  Google Scholar 

  33. F. Mainardi P. Paradisi R. Gorenflo, Probability distributions generated by fractional diffusion equations. arXiv. 0704.0320 (2007), 46.

    Google Scholar 

  34. M.M. Meerschaert A. Sikorskii, Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics. 43. Berlin (2012)

  35. I.J. Mihalcescu C. Vial R. Romestain, Carrier localization in porous silicon investigated by time-resolved luminescence analysis. J. Appl. Phys. 80 No 4 (1996), 2404–2410.

    Google Scholar 

  36. J. Mikusinśki, On the function whose Laplace-transform is e-. Studia Math. 18 (1959), 191–198.

    MathSciNet  MATH  Google Scholar 

  37. F. ‘Oberhettinger, Tables of Mellin Transforms, Springer-Verlag Berlin (1974)

    MATH  Google Scholar 

  38. E. Orsingher and M. D’Ovidio, Probabilistic representation of fundamental solutions to \(\frac{{\partial u}}{{\partial t}} = {\kappa _m}\frac{{{\partial m}u}}{{\partial {x m}}}.\). Elec. Comm. Prob. 17 (2012), Article # 34.

  39. L. Pavesi, Influence of dispersive exciton motion on the recombination dynamics in porous silicon. J. Appl. Phys. 80 No 1 (1996), 216–223.

    Google Scholar 

  40. K.A Penson K. Górska, Exact and explicit probability densities for one-sided Lévy stable distributions. Phys. Rev. Lett. 105 (2010), Paper 210604 4.

    Google Scholar 

  41. K.A Penson K. Górska, On the properties of Laplace transform originating from one-sided Lévy stable laws. J. Phys. A: Math. Theor. 49 No 6 (2016), Paper 065201 10.

    MATH  Google Scholar 

  42. J.C Phillips, Stretched exponential relaxation in molecular and electronic glasses. Rep. Prog. Phys. 59 No 9 (1996), 1133–1207.

    Google Scholar 

  43. I. Podlubny, Fractional Differential EquationsSer. Mathematics and Science and Engineering. 198, Academic Press San Diego (1999.

  44. H. Pollard, The representation of e- as a Laplace integral. Bull. Amer. Math. Soc. 52 (1946), 908–910.

    MathSciNet  MATH  Google Scholar 

  45. A.P Prudnikov Yu.A Brychkov O.I Marichev, Integrals and Series. 1 Elementary Functions. Fizmatlit, Moscow/ Engl, Gordon and Breach Sci. Publ (1986).

  46. A.P Prudnikov Yu.A Brychkov O.I Marichev, Integrals and Series. 3 More Special Functions. Fizmatlit, Moscow/ Engl, Gordon and Breach Sci. Publ (1986.

  47. J. Sabelko J. Ervin M. Gruebele, Observation of strange kinetics in protein folding. Proc. Natl. Acad. Sci. USA. 96 No 11 (1999), 6031–6036.

    Google Scholar 

  48. A.I Saichev G.M Zaslavsky, Fractional kinetic equations: Solutions and applications. Chaos. 7 No 4 (1997), 753–764.

    MathSciNet  MATH  Google Scholar 

  49. S.G Samko A.A Kilbas O.I Marichev, Fractional Integrals and Derivatives. Theory and ApplicationsGordon and Breach Science Publishers Switzerland (1993).

    MATH  Google Scholar 

  50. I.N Sneddon, The Use of Integral Transforms. 2, TATA McGraw-Hill New Delhi (1974.

  51. K. Weron, A probabilistic mechanism hidden behind the universal power law for dielectric relaxation: General relaxation equation. J. Phys.: Condens. Matter. 3 No 46 (1991), 9151–9162.

    Google Scholar 

  52. K. Weron M. Kotulski, On the Cole-Cole relaxation function and related Mittag-Leffler distribution. Physica A. 232 No 1-2 (1996), 180–188.

    Google Scholar 

  53. G. Williams D.C Watts, Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function. Trans. Faraday Soc. 66 (1970), 80–85.

    Google Scholar 

  54. H.K. Xi Z. Gao J. Ouyang Y. Shi Y. Yang, Slow magnetization relaxation and reversal in magnetic thin films. J. Phys.: Condens. Matter. 20 No 29 (2008), Paper 295220 8.

    Google Scholar 

  55. Y. Zhang D.A Benson M.M Meerschaert E.M LaBolle, Space-fractional advection-dispersion equations with variable parameters: Diverse formulas, numerical solutions, and application to the Macrodispersion Experiment site data. Water. Resur. Res. 43 (2007), Paper # W05439 16.

    Google Scholar 

  56. V.M Zolotarev, One-dimensional Stable Distributions. Nauka Moscow (1983), Amer. Math. Soc. Providence, RI (1986).

    Google Scholar 

  57. N. Žurauskiene S. Balevičius D. Pavilonis V. Stankevič V. Plaušinaitiene S. Zherlitsyn T. Herrmannsdòrfer J.M Law J. Wosnitza, Magnetoresistance and resistance relaxation of nanostruc-tured La-Ca-MnO films in pulsed magnetic fields. IEEE T. Magn. 50 No 11 (2014), Paper 6100804 4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Górska.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Górska, K., Horzela, A., Penson, K.A. et al. The Stretched Exponential Behavior and Its Underlying Dynamics. The Phenomenological Approach. FCAA 20, 260–283 (2017). https://doi.org/10.1515/fca-2017-0014

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2017-0014

MSC 2010

Key Words and Phrases

Navigation