Abstract
We present non-existence results for systems of non-local in space hyperbolic equations, for systems of non-local in space parabolic equations, and for systems of non-local in space hyperbolic equations with linear damping terms. Our method of proof is based on the test function method with a help of a convexity inequality recently proved in [2].
Similar content being viewed by others
References
S. Abe, Anomalous diffusion in view of Einstein’s 1905 theory of Brownian motion. Physica A 356, No 2–4 (2006), 403–407.
A. Alsaedi, B. Ahmad, M. Kirane, Blowing-up solutions of some nonlinear non-local evolution equations on the Heisenberg group. Electron. J. Diff. Equ. 2015 (2015), Paper No 227, 1–10.
H. Bahouri, I. Gallagher, Paraproduit sur le groupe de Heisenber et applications. Revista Mathematica Iberoamericana 17 (2001), 69–105.
C.-H. Chang, Der-C.E. Chang, P. Greiner, H.-P. Lee, The positivity of the heat kernel on Heisenberg group. Anal. Appl. 11 (2013), # 1350019.
A. Cordoba, D. Cordoba, A maximum principle applied to quasigeostrophic equations.Comunn. Math. Phys. 249 (2004), 511–528.
A. Elhamidi, M. Kirane, Nonexistence results of solutions to systems of semilinear differential inequalities on the Heisenberg group. Abstract and Applied Analysis 2004, No 2 (2004), 155–164.
H. Fujita, On the blowing-up of solutions of the Cauchy problem for ut = Δu + up+1. J. Fac. Sci. Univ. Tokyo Sec. I 13 (1966), 109–124.
J.A. Goldstein, I. Kombe, Nonlinear degenerate parabolic equations on the Heisenberg group. Int. J. Evol. Equ. 1, No 1 (2005), 1–22.
F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math. 28 (1979), 235–268.
A. Iomin, Fractional-time quantum dynamics. Phys. Rev. E 80 (2009), # 022103.
N. Ju, The maximum principle and the global attractor for the dissipative 2-D quasi-geostrophic equations. Comm. Pure Appl. Ana. (2005), 161–181.
T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations in three space dimensions. Comm. Pure Appl. Math. 37 (1984), 443–455.
N. Laskin, Fractional Schrödinger equation. Physical Review E 66 (2002), # 056108, 7 pages; available online: http://arxiv.org/abs/quant-ph/0206098.
N. Laskin, Fractional quantum mechanics. Physical Review E 62 (2000), 3135–3145; available online: http://arxiv.org/abs/0811.1769.
R. Klages, G. Radons, I.M. Sokolov (Eds.), Anomalous Transport: Foundations and Applications. Wiley-VCH, Weinheim (2008).
M. Kirane, M. Qafsaoui, Fujita’s exponent for a semilinear wave equation with linear damping. Advanced Nonlinear Studies 2, No 1 (2002), 41–49.
F. Mainardi, Fractional relaxation-oscillation and fractional diffusionwave phenomena. Chaos, Solitons, Fractals 7 (1986), 1461–1477.
R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339 (2000), 1–77.
E. Mitidieri, S.I. Pohozaev, A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities. Proc. of the Steklov Institute of Mathematics 234 (2001), 1–383.
D. Müller, E. M. Stein, Litp-estimates for the wave equation on the Heisenberg group. Rev. Mat. Iberoamericana 15, No 2 (1999), 297–334.
A.I. Nachman, The wave equation on the Heisenberg group. Comm. Partial Differential Equations 7, No 6 (1982), 675–714.
A. Pascucci, Semilinear equations on nilpotent Lie groups: global existence and blow-up of solutions. Matematiche 53 (1998), 345–357.
M. Rammaha, Nonlinear wave equation in high dimensions. In: Differential Equations and Applications, Ohio Univ. Press (1989), 322–326.
T. Sideris, Nonexitence of global solution to semilinear wave equatins in high dimensions. J. Differential Equations 52 (1984), 378–406.
W.A. Strauss, Nonlinear Wave Equations. C.B.M.S Lecture Notes 73, Amer. Math. Soc., Providence, RI (1989).
V.E. Tarasov, Fractional Dynamics. Ser. Nonlinear Physical Science, Springer (2010).
V.E. Tarasov, Fractional Heisenberg equation. Phys. Lett. A 372 (2008), 2984–2988.
G. Todorova, B. Yordanov, Critical exponent for a nonlinear wave equation with damping. J. Differential Equations 174 (2001), 464–489.
L. Véron, S.I. Pohozaev, Nonexistence results of solutions of semilinear differential inequalities on the Heisenberg group. Manuscripta Math. 102 (2000), 85–99.
Q.S. Zhang, The critical exponent of a reaction diffusion equation on some Lie groups. Math. Z. 228 (1998), 51–72.
Q.S. Zhang, Blow-up results for nonlinear parabolic equations on manifolds. Duke Math. J. 97 (1999), 515–539.
Q.S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case. C. R. Acad. Sci. Paris S´erie I Math. 333 (2001), 109–114.
C. Zuily, Existence globale de solutions réguliéres pour l’équation des ondes non linéaires amortie sur le groupe de Heisenberg (In French) [Global existence of regular solutions for the damped nonlinear wave equation on the Heisenberg group]. Indiana Uni. Math. J. 62, No 2 (1993), 323–360.
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Kirane, M. Nonexistence of Solutions of Some Non-Linear Non-Local Evolution Systems on the Heisenberg Group. FCAA 18, 1336–1349 (2015). https://doi.org/10.1515/fca-2015-0077
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1515/fca-2015-0077