Skip to main content
Log in

Fractional Integral on Martingale Hardy Spaces With Variable Exponents

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

An Erratum to this article was published on 08 August 2017

This article has been updated

Abstract

In this paper we investigate the boundedness of fractional integral operators on predictable martingale Hardy spaces with variable exponents defined on a probability space. More precisely, let ƒ = (ƒn)n≥0 be a martingale on probability space (Ω, ƒ, ℙ), and let Iαf, α > 0 be the fractional integral operator associated with ƒ. Under some reasonable assumptions, it is proved that Iαƒ is bounded on martingale Hardy spaces with variable exponents. Our method is an extension of atomic decomposition theorem to predicable martingale Hardy spaces of variable exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. A. Almeida, Inversion of the Riesz potential operator on Lebesgue spaces with variable exponent. Fract. Calc. Appl. Anal. 6, No 3 (2003), 311–327; http://www.math.bas.bg/~fcaa.

    MathSciNet  MATH  Google Scholar 

  2. A. Almeida and P. Hästö, Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258, No 5 (2010), 1628–1655.

    Article  MathSciNet  Google Scholar 

  3. D. L. Burkholder, Martingale transforms. The Annals of Mathematical Statistics 37, No 6 (1966), 1494–1504.

    Article  MathSciNet  Google Scholar 

  4. J. A. Zhou and H. Ombe, Commutators on Dyadic Martingales. Proc. Japan Acad. Ser. A Math. Sci. 61, No 2 (1985), 35–38.

    MathSciNet  MATH  Google Scholar 

  5. D. Cruz-Uribe, L. Diening and P. Hästö, The maximal operator on weighted variable Lebesgue spaces. Fract. Calc. Appl. Anal. 14, No 3 (2011), 361–374; DOI: 10.2478/s13540-011-0023-7; http://www.degruyter.com/view/j/fca.2011.14.issue-3/issue-files/fca.2011.14.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  6. D. Cruz-Uribe Zhou and A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Springer Science and Business Media (2013).

    Book  Google Scholar 

  7. D. Cruz-Uribe SFO and L. Daniel Wang, Variable Hardy spaces. Indiana Univ. Math. J. 63, No 2 (2014), 447–493.

    Article  MathSciNet  Google Scholar 

  8. L. Diening, Maximal functions on generalized Lp(・) spaces. Math. Inequal. Appl. 7, No 2 (2004), 245–253.

    MathSciNet  MATH  Google Scholar 

  9. L. Zhou, P. Hästö and R. Roudenko, Function spaces of variable smoothness and integrability. J. Funct. Anal. 256, No 6 (2009), 1731–1768.

    Article  MathSciNet  Google Scholar 

  10. L. Zhou and S. Samko, Hardy inequality in variable exponent Lebesgue spaces. Fract. Calc. Appl. Anal. 10, No 1 (2007), 1–17; http://www.math.bas.bg/∼fcaa.

    MathSciNet  MATH  Google Scholar 

  11. X. Zhou and D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x). J. Math. Anal. Appl. 263, No 2 (2001), 424–446.

    Article  MathSciNet  Google Scholar 

  12. A. M. Garsia, Martingale Inequalities: Seminar Notes on Recent Progress. Math Lecture Note Ser., Benjamin, N. York (1973).

    MATH  Google Scholar 

  13. G.H. Zhou and J.E. Littlewood, Some properties of fractional integrals, I. Math. Z. 27, No 1 (1928), 565–606.

    Article  MathSciNet  Google Scholar 

  14. G.H. Zhou and J.E. Littlewood, Some properties of fractional integrals, II. Math. Z. 34, No 1 (1932), 403–439.

    Article  MathSciNet  Google Scholar 

  15. K.P. Ho, John-Nirenberg inequalities on Lebesgue spaces with variable exponents. Taiwanese J. Math. 18, No 4 (2014), 1107–1118.

    Article  MathSciNet  Google Scholar 

  16. Y. Zhou, L.H. Zhou and P.D. Liu, Atomic decompositions of Lorentz martingale spaces and applications. J. Funct. Spaces Appl. 7, No 2 (2009), 153–166.

    Article  MathSciNet  Google Scholar 

  17. Y. Zhou, D. Zhou, Z. Zhou and W. Chen, Martingale Hardy spaces with variable exponents. arXiv:1404.2395v2 (2014).

    MATH  Google Scholar 

  18. O. Kovàčik and J. Rákosník, On spaces Lp(x) and W1p(x). Czechoslovak Math. J. 41, No 4 (1991), 592–618.

    Article  MathSciNet  Google Scholar 

  19. P.D. Zhou and Y.L. Hou, Atomic decomposition of Banach space-valued martingales. Sci. China Ser. A 42, No 1 (1999), 38–47.

    Article  MathSciNet  Google Scholar 

  20. T. Zhou, E. Zhou and G. Sadasue, Martingale Orlicz-Hardy spaces. Math. Nachr. 285, No 5–6 (2012), 670–686.

    MathSciNet  MATH  Google Scholar 

  21. E. Nakai, Recent topics of fractional integrals. Sugaku Expositions 20, No 2 (2007), 215–235.

    MathSciNet  MATH  Google Scholar 

  22. E. Zhou and G. Sadasue, Martingale Morrey-Campanato spaces and fractional integrals. J. Funct. Spaces Appl. 2012 (2012), Art. ID 673929, 29 pp.

  23. E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262, No 9 (2012), 3665–3748.

    Article  MathSciNet  Google Scholar 

  24. W. Orlicz, Über konjugierte Expoentenfolgen. Studia Math. 3, No 1 (1931), 200–211.

    Article  Google Scholar 

  25. G. Sadasue, Fractional integrals on martingale Hardy spaces for 0 < p ≤ 1. Mem. Osaka Kyoiku Univ. Ser. III 60, No 1 (2011), 1–7.

    MathSciNet  Google Scholar 

  26. S.G. Samko, Hardy-Littlewood-Stein-Weiss inequality in the Lebesgue spaces with variable exponent. Frac. Calc. and Appl. Anal. 6, No 4 (2003), 421–440; http://www.math.bas.bg/∼fcaa.

    MathSciNet  MATH  Google Scholar 

  27. S.G. Samko, Hypersingular Integrals and Their Applications. Ser. Analytical Methods and Special Functions, Taylor and Francis, London (2002).

    MATH  Google Scholar 

  28. S.G. Zhou, A.A. Zhou and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993); Reprinted by Taylor and Francis, London (2002).

    Google Scholar 

  29. Y. Sawano, Atomic decomposition of Hardy spaces with variable exponents and its application to bounded linear operators. Integr. Equ. Oper. Theory. 77, No 1 (2013), 123–148.

    Article  MathSciNet  Google Scholar 

  30. E.M. Zhou and G. Weiss, On the theory of harmonic functions of several variables I, the theory of Hp-spaces. Acta Math. 103, No 1 (1960), 25–62.

    MathSciNet  Google Scholar 

  31. C. Watari, Multipliers for Walsh Fourier series. Tohoku Math. J. 16, No 3 (1964), 239–251.

    Article  MathSciNet  Google Scholar 

  32. F. Weisz, Martingale Hardy spaces for 0 < p ≤ 1. Probab. Th. Rel. Fields. 86, No 3 (1990), 361–376.

    Article  MathSciNet  Google Scholar 

  33. F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier Analysis. Springer (1994).

    Book  Google Scholar 

  34. L. Zhou, Z. Hao and Y. Jiao, John-Nirenberg inequalities with variable exponents on probability spaces. To appear in: Tokyo Journal Math. (2015).

    Google Scholar 

  35. R. Zhou, L. Zhou and Y. Jiao, New John-Jihn inequalities for martingales. Stat. Probab. Lett. 86 (2014), 68–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Hao.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Z., Jiao, Y. Fractional Integral on Martingale Hardy Spaces With Variable Exponents. FCAA 18, 1128–1145 (2015). https://doi.org/10.1515/fca-2015-0065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2015-0065

MSC 2010

Key Words and Phrases

Navigation