Skip to main content
Log in

Facile and efficient synthesis of xanthenedione derivatives promoted by niobium pentachloride

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Xanthenedione derivatives were synthesised in one-pot reactions between arylaldehyde derivatives and 1,3-cyclohexanedione promoted by niobium pentachloride. This new method is simple, costeffective, high-yielding with a good variety of substrates generality, and can be conducted within reasonable reaction times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, M., King, T. A., Ko, D. K., Cha, B. H., & Lee, J. (2002). Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. Journal of Physics D: Applied Physics, 35, 1473–1476. DOI: 10.1088/0022-3727/35/13/303.

    Article  CAS  Google Scholar 

  • Alves, O. L. (1986). Técnicas de síntese em atmosfera inerte. Química Nova, 9, 276–281. (in Portuguese)

    CAS  Google Scholar 

  • Andrade, C. K. Z. (2004). Niobium pentachloride in organic synthesis: Applications and perspectives. Current Organic Synthesis, 1, 333–353.

    Article  CAS  Google Scholar 

  • ASTM (2014). Standard test method for purity by differential scanning calorimetry. West Conshohocken, PA, USA: ASTM International. DOI: 10.1520/e0928-08r14.

    Google Scholar 

  • Bartolomeu, A. A., Menezes, M. L., & Silva-Filho, L. C. (2014). Efficient one-pot synthesis of 14-aryl-14H-dibenzo [a, j]xanthene derivatives promoted by niobium pentachloride. Chemical Papers, 68, 1593–1600. DOI: 10.2478/s11696-014-0597-8.

    CAS  Google Scholar 

  • Bartolomeu, A. A., Menezes, M. L., & Silva-Filho, L. C. (2015). Chemoselective condensation of β-naphthol, dimethyl malonate, and aromatic aldehydes promoted by niobium pentachloride. Synthetic Communications, 45, 1114–1126. DOI: 10.1080/00397911.2014.999341.

    Article  CAS  Google Scholar 

  • Bekaert, A., Andrieux, J., & Plat, M. (1992). New total synthesis of bikaverin. Tetrahedron Letters, 33, 2805–2806. DOI: 10.1016/s0040-4039(00)78863-0.

    Article  CAS  Google Scholar 

  • Bhowmik, B. B., & Ganguly, P. (2005). Photophysics of xan-thene dyes in surfactant solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61, 1997–2003. DOI: 10.1016/j.saa.2004.07.031.

    Article  Google Scholar 

  • Cao, Y., Yao, C., Qin, B., & Zhang, H. (2013). Solvent-free synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes catalyzed by recyclable and reusable iron(III) triflate. Research on Chemical Intermediates, 39, 3055–3062. DOI: 10.1007/s11164-012-0818-0.

    Article  CAS  Google Scholar 

  • Chibale, K., Visser, M., van Schalkwyk, D., Smith, P. J., Saravanamuthu, A., & Fairlamb, A. H. (2003). Exploring the potential of xanthene derivatives as trypanothione reductase inhibitors and chloroquine potentiating agents. Tetrahedron, 59, 2289–2296. DOI: 10.1016/s0040-4020(03)00240-0.

    Article  CAS  Google Scholar 

  • Dharma Rao, G. B., Kaushik, M. P., & Halve, A. K. (2012). An efficient synthesis of naphtha[1,2-e]oxazinone and 14-substituted-14H-dibenzo[a,j]xanthene derivatives promoted by zinc oxide nanoparticle under thermal and solvent-free conditions. Tetrahedron Letters, 53, 2741–2744. DOI: 10.1016/j.tetlet.2012.03.085.

    Article  CAS  Google Scholar 

  • D’Souza, D. M., & Müller, T. J. J. (2007). Multi-component syntheses of heterocycles by transition-metal catalysis. Chemical Society Reviews, 36, 1095–1108. DOI: 10.1039/ b608235c.

    Article  Google Scholar 

  • El-Brashy, A. M., El-Sayed Metwally, M., & El-Sepai, F. A. (2004). Spectrophotometric determination of some fluoroquinolone antibacterials by binary complex formation with xanthene dyes. II Farmaco, 59, 809–817. DOI: 10.1016/j. farmac. 2004.07.001.

    Article  CAS  Google Scholar 

  • Fobane, L., Ndam, E. N., & Mbolo, M. J. (2014). Population structure and natural regeneration of Allanblackia floribunda oliv. (Clusiaceae) in a forest concession of East Cameroon. Journal of Biodiversity and Environmental Sciences, 4, 403–408.

    Google Scholar 

  • Fuller, R. W., Blunt, J. W., Boswell, J. L., Cardellina, J. H., & Boyd, M. R. (1999). Guttiferone F, the first prenylated ben-zophenone from Allanblackia stuhlmannii. Journal of Natural Products, 62, 130–132. DOI: 10.1021/np9801514.

    Article  CAS  Google Scholar 

  • Hiranrat, A., & Mahabusarakam, W. (2008). New acylphloro-glucinols from the leaves of Rhodomyrtus tomentosa. Tetrahedron, 64, 11193–11197. DOI: 10.1016/j.tet.2008.09.054.

    Article  CAS  Google Scholar 

  • Hiranrat, A., Chitbankluoi, W., Mahabusarakam, W., Limsuwan, S., & Voravuthikunchai, S. P. (2012). A new flavellagic acid derivative and phloroglucinol from Rhodomyrtus tomentosa. Natural Product Research, 26, 1904–1909. DOI: 10.1080/14786419.2011.628666.

    Article  CAS  Google Scholar 

  • Hou, J. T., Gao, J. W., & Zhang, Z. H. (2010a). NbCl5: an efficient catalyst for one-pot synthesis of a-aminophosphonates under solvent-free conditions. Applied Organometallic Chemistry, 25, 47–53. DOI: 10.1002/aoc.1687.

    Article  Google Scholar 

  • Hou, J. T., Liu, Y. H., & Zhang, Z. H. (2010b). NbCl5 as an efficient catalyst for rapid synthesis of quinoxaline derivatives. Journal of Heterocyclic Chemistry, 47, 703–706. DOI: 10.1002/jhet.388.

    CAS  Google Scholar 

  • Hou, J. T., Chen, H. L., & Zhang, Z. H. (2011a). Rapid and efficient trimethylsilyl protection of hydroxyl groups catalyzed by niobium(V) chloride. Phosphorus, Sulfur, and Silicon and the Related Elements, 186, 88–93. DOI: 10.1080/10426507. 2010.482544.

    Article  CAS  Google Scholar 

  • Hou, J. T., Gao, J. W., & Zhang, Z. H. (2011b). An efficient and convenient protocol for the synthesis of diaminotri-arylmethanes. Monatshefte fur Chemie–Chemical Monthly, 142, 495–499. DOI: 10.1007/s00706-011-0461-2.

    Article  CAS  Google Scholar 

  • Horning, E. C, & Horning, M. G. (1946). Methone derivatives of aldehydes. The Journal of Organic Chemistry, 11, 95–99. DOI: 10.1021/jo01171a014.

    Article  CAS  Google Scholar 

  • Ilangovan, A., Malayappasamy, S., Muralidharan, S., & Maruthamuthu, S. (2011). A highly efficient green synthesis of 1,8-dioxo-octahydroxanthenes. Chemistry Central Journal, 5, 81. DOI: 10.1186/1752-153x-5-81.

    Article  CAS  Google Scholar 

  • Iniyavan, P., Sarveswari, S., & Vijayakumar, V. (2015). Microwave-assisted clean synthesis of xanthenes and chromenes in [bmim][PF6] and their antioxidant studies. Research on Chemical Intermediates, 41, 7413–7426. DOI: 10.1007/ s11164-014-1821-4.

    Article  CAS  Google Scholar 

  • Isambert, N., & Lavilla, R. (2008). Heterocycles as key substrates in multicomponent reactions: The fast lane towards molecular complexity. Chemistry–A European Journal, 14, 8444–8454. DOI: 10.1002/chem.200800473.

    Article  CAS  Google Scholar 

  • John, A., Yadav, P. J. P., & Palaniappan, S. (2006). Clean synthesis of 1,8-dioxo-dodecahydroxanthene derivatives catalyzed by polyaniline-p-toluenesulfonate salt in aqueous media. Journal of Molecular Catalysis A: Chemical, 248, 121–125. DOI: 10.1016/j.molcata.2005.12.017.

    Article  CAS  Google Scholar 

  • Karami, B., Zare, Z., & Eskandari, K. (2013a). Molybdate sulfonic acid: preparation, characterization, and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis. Chemical Papers, 67, 145–154. DOI: 10.2478/s11696-012-0263-y.

    CAS  Google Scholar 

  • Karami, B., Eskandari, K., Gholipour, S., & Jamshidi, M. (2013b). Facile and rapid synthesis of 9-aryl 1,8-dioxoocta-hydroxanthenes derivatives using tungstate sulfuric acid. Organic Preparations and Procedures International: The New Journal for Organic Synthesis, 45, 220–226. DOI: 10.1080/00304948.2013.764790.

    Article  CAS  Google Scholar 

  • Karami, B., Eskandari, K., Zare, Z., & Gholipour, S. (2014). A new access to 1,8-dioxooctahydroxanthenes using yt-trium(III) nitrate hexahydrate and tin(II) chloride dihydrate as effective and reusable catalysts. Chemistry of Heterocyclic Compounds, 49, 1715–1722. DOI: 10.1007/s10593-014-1423-5.

    Article  CAS  Google Scholar 

  • Kaya, M., Basar, E., & Colak, F. (2011). Synthesis and antimicrobial activity of some bisoctahydroxanthene-1,8-dione derivatives. Medicinal Chemistry Research, 20, 1214–1219. DOI: 10.1007/s00044-010-9459-2.

    Article  CAS  Google Scholar 

  • Knight, C. G., & Stephens, T. (1989). Xanthene-dye-labelled phosphatidylethanolamines as probes of interfacial pH. Studies in phospholipid vesicles. Biochemical Journal, 258, 683–687. DOI: 10.1042/bj2580683.

    Article  CAS  Google Scholar 

  • Knight, D. W., & Little, P. B. (2001). The first efficient method for the intramolecular trapping of benzynes by phenols: a new approach to xanthenes. Journal of the Chemical Society, 14, 1771–1777. DOI: 10.1039/b103834f.

    Google Scholar 

  • Lacerda, V., Jr., Dos Santos, D. A., Da Silva-Filho, L. C., Greco, S. J., & dos Santos, R. B. (2012). The growing impact of niobium in organic synthesis and catalysis. Aldrichimica Acta, 45, 19–27.

    CAS  Google Scholar 

  • Li, P., Ma, F., Wang, P., & Zhang, Z. H. (2013). Highly efficient low melting mixture catalyzed synthesis of 1,8-dioxo-dodecahydroxanthene derivatives. Chinese Journal of Chemistry, 31, 757–763. DOI: 10.1002/cjoc.201300152.

    Article  Google Scholar 

  • Limsuwan, S., Trip, E. N., Kouwen, T. R. H. M., Piersma, S., Hiranrat, A., Mahabusarakam, W., Voravuthikunchai, S. P., van Dijl, J. M., & Kayser, O. (2009). Rhodomyrtone: a new candidate as natural antibacterial drug from Rhodomyrtus tomentosa. Phytomedicine, 16, 645–651. DOI: 10.1016/j.phymed.2009.01.010.

    Article  CAS  Google Scholar 

  • Locksley, H. D., & Murray, G. (1971). Extractives from Guttiferae. Part X1X. The isolation and structure of two benzophenones, six xanthones and two biflavonoids from the heartwood of Allanblackia floribunda Oliver. Journal of the Chemical Society C: Organic, 1966–1971. DOI: 10.1039/j39710001332.

    Google Scholar 

  • Lü, H. Y., Li, J. J., & Zhang, Z. H. (2009). ZrOCl2–8H2O: a highly efficient catalyst for the synthesis of 1,8-dioxo-octahydroxanthene derivatives under solvent-free conditions. Applied Organometallic Chemistry, 23, 165–169. DOI: 10.1002/aoc.1488.

    Article  Google Scholar 

  • Makino, M., & Fujimoto, Y. (1999). Flavanones from Baeckea frutescens. Phytochemistry, 50, 273–277. DOI: 10.1016/ s0031-9422(98)00534-2.

    Article  CAS  Google Scholar 

  • Maleki, B., Gholizadeh, M., & Sepehr, Z. (2011). 1,3,5-Trichloro-2,4,6-triazinetrion: A versatile heterocycle for the one-pot synthesis of 14-aryl-or alkyl-14H-dibenzo[a,tj]xan-thene, 1,8-dioxooctahydroxanthene and 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-one derivatives under solvent-free conditions. Bulletin of Korean Chemical Society, 32, 1697–1702. DOI: 10.5012/bkcs.2011.32.5.1697.

    Article  CAS  Google Scholar 

  • Maleki, B., Barzegar, S., Sepehr, Z., Kermanian, M., & Tayebee, R. (2012). A novel polymeric catalyst for the one-pot synthesis of xanthene derivatives under solvent-free conditions. Journal of the Iranian Chemical Society, 9, 757–765. DOI: 10.1007/s13738-012-0092-5.

    Article  CAS  Google Scholar 

  • Napoleon, A. A., & Khan, F. R. N. (2014). Potential anti-tubercular and in vitro anti-inflammatory agents: 9-substi-tuted 1,8-dioxo-octahydroxanthenes through cascade/domino reaction by citric fruit juices. Medicinal Chemistry Research, 23, 4749–4760. DOI: 10.1007/s00044-014-1033-x.

    Article  CAS  Google Scholar 

  • Napoleon, A. A., Khan, F. R. N., Jeong, E. D., & Chung, E. H. (2014). Regioselective synthesis of 3,4,6,7-tetrahydro-3,3-dimethyl-9-phenyl-2H-xanthene-1,8(5H,9H)-diones through ascorbic acid catalyzed three-component domino reaction. Tetrahedron Letters, 55, 5656–5659. DOI: 10.1016/j.tetlet. 2014.08.040.

    Article  CAS  Google Scholar 

  • Nkengfack, A. E., Azebaze, G. A., Vardamides, J. C., Fomum, Z. T., & van Heerden, F. R. (2002). A prenylated xanthone from Allanblackia floribunda. Phytochemistry, 60, 381–384. DOI: 10.1016/s0031-9422(02)00036-5.

    Article  CAS  Google Scholar 

  • Ormond, A. B., & Freeman, H. S. (2013). Dye sensitizers for photodynamic therapy. Materials, 6, 817–840. DOI: 10.3390/ma6030817.

    Article  CAS  Google Scholar 

  • Oshiro, P. B., Lima, P. S. S. G., Menezes, M. L., & Silva-Filho, L. C. (2015). Synthesis of 4H-chromenes promoted by NbCl5 through multicomponent reaction. Tetrahedron Letters, 56, 4476–4479. DOI: 10.1016/j.tetlet.2015.05.099.

    Article  CAS  Google Scholar 

  • Peres, V., & Nagem, T. J. (1997). Trioxygenated naturally occurring xanthones. Phytochemistry, 44, 191–214. DOI: 10.1016/s0031-9422(96)00421-9.

    Article  CAS  Google Scholar 

  • Peres, V., Nagem, T. J., & Oliveira, F. F. (2000). Tetraoxy-genated naturally occurring xanthones. Phytochemistry, 55, 683–710. DOI: 10.1016/s0031-9422(00)00303-4.

    Article  CAS  Google Scholar 

  • Pramanik, A., & Bhar, S. (2012). Alumina-sulfuric acid catalyzed eco-friendly synthesis of xanthenediones. Catalysis Communications, 20, 17–24. DOI: 10.1016/j.catcom.2011.12. 036.

    Article  CAS  Google Scholar 

  • Preetam, A., Prasad, D. K., Sharma, J., & Nath, M. (2015). Facile one-pot synthesis of oxo-xanthenes under microwave irradiation. Current Microwave Chemistry, 2, 15–23. DOI: 10.2174/221333560201150212102647.

    Article  CAS  Google Scholar 

  • Saini, A., Kumar, S., & Sandhu, J. (2006). A new LiBr-catalyzed, facile and efficient method for the synthesis of 14-alkyl or aryl-14H-dibenzo[a,j]xanthenes and tetrahydroben-zo[b]pyrans under solvent-free conventional and microwave heating. Synlett, 2006, 1928–1932. DOI: 10.1055/s-2006-947339.

    Article  Google Scholar 

  • Shirini, F., Mamaghani, M., & Atghia, S. V. (2013). Use of nanoporous Na+-montmorillonite sulfonic acid (SANM) as an eco-benign, efficient and reusable solid acid catalyst for the one-pot synthesis of 14-aryl-14-H-dibenzo[a,j]xanthenes and 1,8-dioxo-dodecahydroxanthene derivatives. Journal of the Iranian Chemical Society, 10, 415–420. DOI: 10.1007/s 13738-012-0174-4.

    Article  CAS  Google Scholar 

  • Shirini, F., Abedini, M., Seddighi, M., Jolodar, O. G., Safarpoor, M., Langroodi, N., & Zamani, S. (2014). Introduction of a new bi-SO3H ionic liquid based on 2,2’-bipyridine as a novel catalyst for the synthesis of various xanthene derivatives. RSC Advances, 4, 63526–63532. DOI: 10.1039/c4ra12361a.

    Article  CAS  Google Scholar 

  • Shirini, F., Langarudi, M. S. N., Seddighi, M., & Jolodar, O. G. (2015). Bi-SO3H functionalized ionic liquid based on DABCO as a mild and efficient catalyst for the synthesis of 1,8-dioxo-octahydro-xanthene and 5-arylmethylene-pyrimidine-2,4,6-trione derivatives. Research on Chemical Intermediates, 41, 8483–8497. DOI: 10.1007/s11164-014-1905-1.

    Article  CAS  Google Scholar 

  • Sianglum, W., Srimanote, P., Wonglumsom, W., Kittiniyom, K., & Voravuthikunchai, S. P. (2011). Proteome analyses of cellular proteins in methicillin-resistant Staphylococcus aureus treated with rhodomyrtone, a novel antibiotic candidate. PLoS ONE, 6, e16628. DOI: 10.1371/journal.pone.0016628.

    Article  CAS  Google Scholar 

  • Soleimani, E., Khodaei, M. M., & Koshvandi, A. T. K. (2011). The efficient synthesis of 14-alkyl or aryl 14H-dibenzo[a,j]xanthenes catalyzed by bismuth(III) chloride under solvent-free conditions. Chinese Chemical Letters, 22, 927–930. DOI: 10.1016/j.cclet.2011.01.012.

    Article  CAS  Google Scholar 

  • Urinda, S., Kundu, D., Majee, A., & Hajra, A. (2009). Indium triflate-catalyzed one-pot synthesis of 14-alkyl or aryl-14H-dibenzo[a,j]xanthenes in water. Heteroatom Chemistry, 20, 232–234. DOI: 10.1002/hc.20539.

    Article  CAS  Google Scholar 

  • Visutthi, M., Srimanote, P., & Voravuthikunchai, S. P. (2011). Responses in the expression of extracellular proteins in methicillin-resistant Staphylococcus aureus treated with rhodomyrtone. The Microbiological Society of Korea, 49, 956–964. DOI: 10.1007/s12275-011-1115-0.

    CAS  Google Scholar 

  • Wang, J. Q., & Harvey, R. G. (2002). Synthesis of polycyclic xanthenes and furans via palladium-catalyzed cyclization of polycyclic aryltriflate esters. Tetrahedron, 58, 5927–5931. DOI: 10.1016/s0040-4020(02)00534-3.

    Article  CAS  Google Scholar 

  • Wang, L. M., Sui, Y. Y., & Zhang, L. (2008). Synthesis of 14-[(un)substituted phenyl] or alkyl-14H-dibenzo[a,j]xanthenes using Yb(OTf)3 as an efficient catalyst under solvent-free conditions. Chinese Journal of Chemistry, 26, 1105–1108. DOI: 10.1002/cjoc. 200890196.

    Article  CAS  Google Scholar 

  • Zhang, Z. H., & Liu, Y. H. (2008). Antimony trichloride/SiO2 promoted synthesis of 9-ary-3,4,5,6,7,9-hexahydroxanthene-1,8-diones. Catalysis Communications, 9, 1715–1719. DOI: 10.1016/j.catcom.2008.01.031.

    Article  CAS  Google Scholar 

  • Zhang, Z., & Tao, X. (2008). 2,4,6-Trichloro-1,3,5-triazine-promoted synthesis of 1,8-dioxo-octahydroxanthenes under solvent-free conditions. Australian Journal of Chemistry, 61, 77–79. DOI: 10.1071/ch07274.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz C. Da Silva-Filho.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, W.H., Da Silva-Filho, L.C. Facile and efficient synthesis of xanthenedione derivatives promoted by niobium pentachloride. Chem. Pap. 70, 1658–1664 (2016). https://doi.org/10.1515/chempap-2016-0098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0098

Keywords

Navigation